Wave Propagation Through Caustics: Applications in Gravitational Wave Physics

通过焦散的波传播:引力波物理中的应用

基本信息

  • 批准号:
    EP/G049092/1
  • 负责人:
  • 金额:
    $ 28.31万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2009
  • 资助国家:
    英国
  • 起止时间:
    2009 至 无数据
  • 项目状态:
    已结题

项目摘要

Gravitational Waves -- propagating ripples in the fabric of space and time -- are a fundamental prediction of Einstein's theory of General Relativity. Nearly a century has passed since Einstein's masterwork, and yet gravitational waves remain frustratingly elusive! Astronomers have gathered strong evidence for their existence by measuring the rate of rotation of rapidly-spinning neutron stars ( pulsars ). Here on Earth, physicists are optimistic of direct detection within a decade.Gravitational waves (GWs) are important because they are generated by the most violent processes in the known Universe, such as supernovae, black hole mergers, and galaxy collisions. To the frustration of astronomers, such powerful processes are hidden behind shrouds of dust and strong fields. Light cannot penetrate this shroud, but gravitational waves can. By lifting the shroud, GWs will reveal the dynamic heart at the centre of such processes.Astronomy will enter a new era with the launch of the Laser Interferometer Space Antenna (LISA) in 2018 (est). A key aim of LISA is to detect gravitational waves emitted by binary black hole systems. In theory, the motion of a compact body orbiting a black hole can be reconstructed from the gravitational wave signal alone. A recent NASA-ESA report concludes that LISA will provide unambiguous and clean tests of the theory of general relativity in the strong field dynamical regime and be able to make detailed maps of spacetime near black holes. This is an exciting prospect, yet much theoretical work is needed if we are to separate out a small GW signal from a noisy background.In this project I will model so-called Extreme Mass Ratio Inspiral (EMRI) events, in which a small compact body spirals into a large black hole (e.g. Sag A*, residing at the centre of our galaxy). The gravitational wave signal emitted by EMRIs is a key target for LISA; hence this project is both timely and potentially significant.The most promising method for modelling EMRIs requires the calculation of a gravitational self-force which acts upon the small body. The self-force leads to a loss of orbital energy, causing the small body to spiral inwards, slowly at first, but with increasing rapidity. In curved spacetime -- for example, in the immediate vicinity of a black hole -- it turns out to be surprisingly difficult to compute the self-force, because it depends on the entire history of the small body's motion! In this project I will develop new mathematical methods to calculate the self-force, to complement the existing approach pioneered by members of the Southampton Relativity Group.The self-force arises from the interaction between a body and perturbations in its own gravitational field. Recent work suggests that, for EMRIs, the gravitational self-force may be primarily due to a non-local component which arises from perturbations that are lensed multiple times around the central black hole. To investigate this idea, I will make a mathematical study of the propagation of gravitational waves through focal points (also known as caustics). My primary motivation is to clarify the physical origin of the self-force, but other applications may also arise from this work.Since wave phenomena (diffraction, refraction, rainbows, glories, etc.) are ubiquitous across the physical sciences, I propose to make a multi-disciplinary study of the effects of caustics upon wave propagation. I will draw upon theoretical developments in seismology; catastrophe theory in optics; distribution theory in mathematics; and a range of other fields. I will also draw upon the breadth and depth of experience in the School of Mathematics at Southampton. Together with co-workers, I hope to make a significant contribution to the future development of precision Gravitational Wave Astronomy.
引力波--在时空结构中传播的涟漪--是爱因斯坦广义相对论的基本预测。爱因斯坦的杰作已经过去了将近世纪,然而引力波仍然令人沮丧地难以捉摸!天文学家们通过测量快速旋转的中子星的旋转速度,收集了它们存在的有力证据。在地球上,物理学家对十年内直接探测到引力波持乐观态度。引力波(GW)很重要,因为它们是由已知宇宙中最剧烈的过程产生的,如超新星、黑洞合并和星系碰撞。令天文学家沮丧的是,如此强大的过程隐藏在尘埃和强场的后面。光不能穿透这个护罩,但引力波可以。随着激光干涉仪空间天线(丽莎)的发射,天文学将进入一个新的时代。丽莎的一个关键目标是探测双黑洞系统发射的引力波。理论上,一个围绕黑洞运行的致密物体的运动可以单独从引力波信号中重建出来。NASA和ESA最近的一份报告得出结论,丽莎将在强场动力学机制中对广义相对论进行明确而清晰的测试,并能够绘制黑洞附近时空的详细地图。这是一个令人兴奋的前景,但如果我们要从嘈杂的背景中分离出小的GW信号,还需要大量的理论工作。在这个项目中,我将模拟所谓的极端质量比螺旋(EMRI)事件,其中一个小的致密体螺旋进入一个大黑洞(例如位于我们银河系中心的凹陷A*)。EMRIs发出的引力波信号是丽莎的关键目标;因此,该项目既及时又具有潜在意义。EMRIs建模的最有前途的方法需要计算作用于小物体的引力自作用力。自引力导致轨道能量的损失,导致小天体向内螺旋运动,起初很慢,但速度越来越快。在弯曲的时空中--例如,在黑洞附近--计算自作用力是非常困难的,因为它依赖于小物体运动的整个历史!在这个项目中,我将开发新的数学方法来计算自作用力,以补充现有的方法,该方法由南安普顿相对论小组的成员开创。自作用力产生于物体与其自身引力场的扰动之间的相互作用。最近的工作表明,对于EMRI,引力自作用力可能主要是由于非局部分量,该分量来自围绕中心黑洞多次透镜的扰动。为了研究这个想法,我将对引力波通过焦点(也称为焦散)的传播进行数学研究。我的主要动机是澄清自作用力的物理起源,但这项工作也可能产生其他应用。在物理科学中无处不在,我建议对焦散线对波传播的影响进行多学科研究。我将借鉴地震学的理论发展;光学中的突变理论;数学中的分布理论;以及一系列其他领域。我还将借鉴的广度和深度的经验,在学校的数学在南安普顿。我希望与同事们一起,为精确引力波天文学的未来发展做出重大贡献。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quasinormal modes and Regge poles of the canonical acoustic hole
正则声孔的拟正态模式和雷格极点
  • DOI:
    10.48550/arxiv.1407.3904
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dolan S
  • 通讯作者:
    Dolan S
Quasinormal mode spectrum of a Kerr black hole in the eikonal limit
  • DOI:
    10.1103/physrevd.82.104003
  • 发表时间:
    2010-07
  • 期刊:
  • 影响因子:
    5
  • 作者:
    S. Dolan
  • 通讯作者:
    S. Dolan
Resonances of a rotating black hole analogue
旋转黑洞类似物的共振
  • DOI:
    10.48550/arxiv.1105.1795
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dolan S
  • 通讯作者:
    Dolan S
Kermions: quantization of fermions on Kerr space-time
Kermions:克尔时空上费米子的量子化
  • DOI:
    10.48550/arxiv.1207.7089
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Casals M
  • 通讯作者:
    Casals M
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sam Dolan其他文献

Sam Dolan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sam Dolan', 18)}}的其他基金

New invariants for the gravitational two-body problem
引力二体问题的新不变量
  • 批准号:
    EP/M025802/1
  • 财政年份:
    2015
  • 资助金额:
    $ 28.31万
  • 项目类别:
    Research Grant

相似海外基金

Collaborative Research: Nonlinear Dynamics and Wave Propagation through Phononic Tunneling Junctions based on Classical and Quantum Mechanical Bistable Structures
合作研究:基于经典和量子机械双稳态结构的声子隧道结的非线性动力学和波传播
  • 批准号:
    2423960
  • 财政年份:
    2024
  • 资助金额:
    $ 28.31万
  • 项目类别:
    Standard Grant
Collaborative Research: Nonlinear Dynamics and Wave Propagation through Phononic Tunneling Junctions based on Classical and Quantum Mechanical Bistable Structures
合作研究:基于经典和量子机械双稳态结构的声子隧道结的非线性动力学和波传播
  • 批准号:
    2314687
  • 财政年份:
    2022
  • 资助金额:
    $ 28.31万
  • 项目类别:
    Standard Grant
Modelling wave propagation through broken ice
模拟波浪穿过碎冰的传播
  • 批准号:
    2765131
  • 财政年份:
    2022
  • 资助金额:
    $ 28.31万
  • 项目类别:
    Studentship
Collaborative Research: Nonlinear Dynamics and Wave Propagation through Phononic Tunneling Junctions based on Classical and Quantum Mechanical Bistable Structures
合作研究:基于经典和量子机械双稳态结构的声子隧道结的非线性动力学和波传播
  • 批准号:
    2037565
  • 财政年份:
    2021
  • 资助金额:
    $ 28.31万
  • 项目类别:
    Standard Grant
Collaborative Research: Nonlinear Dynamics and Wave Propagation through Phononic Tunneling Junctions based on Classical and Quantum Mechanical Bistable Structures
合作研究:基于经典和量子机械双稳态结构的声子隧道结的非线性动力学和波传播
  • 批准号:
    2037563
  • 财政年份:
    2021
  • 资助金额:
    $ 28.31万
  • 项目类别:
    Standard Grant
Superfluorescence, free-induction decay, and four-wave mixing: experimental and numerical studies of the propagation of free-electron laser pulses through dense atomic/ionic media
超荧光、自由感应衰变和四波混合:自由电子激光脉冲通过致密原子/离子介质传播的实验和数值研究
  • 批准号:
    19K12636
  • 财政年份:
    2019
  • 资助金额:
    $ 28.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Characterisation of the relationship between electrogram morphology and wave-front propagation patterns in humans with persistent atrial fibrillation through non-contact mapping.
通过非接触式测绘表征持续性心房颤动人类的电图形态与波前传播模式之间的关系。
  • 批准号:
    nhmrc : 1054220
  • 财政年份:
    2013
  • 资助金额:
    $ 28.31万
  • 项目类别:
    Early Career Fellowships
Study on seismic wave propagation through the heterogeneous structure and the Green function retrieval from the noise cross correlation
地震波通过非均质结构传播及噪声互相关格林函数反演研究
  • 批准号:
    24540448
  • 财政年份:
    2012
  • 资助金额:
    $ 28.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Elastic, acoustic and water wave propagation through inhomogeneous media
通过非均匀介质的弹性波、声波和水波传播
  • 批准号:
    EP/G064512/1
  • 财政年份:
    2010
  • 资助金额:
    $ 28.31万
  • 项目类别:
    Research Grant
The influence of nonlinear pre-stress on wave propagation through viscoelastic composites.
非线性预应力对粘弹性复合材料中波传播的影响。
  • 批准号:
    EP/H050779/1
  • 财政年份:
    2010
  • 资助金额:
    $ 28.31万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了