Shape parameterisation for identification and characterisation of polymer surface features

用于识别和表征聚合物表面特征的形状参数化

基本信息

  • 批准号:
    EP/G06573X/1
  • 负责人:
  • 金额:
    $ 13.64万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2009
  • 资助国家:
    英国
  • 起止时间:
    2009 至 无数据
  • 项目状态:
    已结题

项目摘要

While we may perceive the surfaces of commonplace objects as smooth or flat, when investigated at a microscopic level there is always quite a complicated landscape. There will be hills ('asperities') and valleys, and the sizes and shapes of these geometrical objects may be important for a variety of reasons. In micromoulding of polymers, the surface characteristics may be the crucial feature that controls the function of a product, as is the case (for instance) with a microlens consisting of an array of very small lenses. There is therefore a need to control the surface of the product, and to do this automatically we need to characterise the surface mathematically. Within the polymer IRC laboratories at Bradford, we have instruments that can measure surfaces and produce digital images of them. Each image consists of many thousands of points in three-dimensional space, and is cumbersome to manipulate. In the case of a long sequence of images, such as is proposed in the monitoring of a mass production process, there will be many of these image files that will occupy a prohibitively large amount of computer storage. To handle these files routinely as part of a control and optimisation scheme for a process, a means of characterising the surfaces using a small number of parameters is required.A method of characterisation of three-dimensional surfaces, the PDE method, is under development in the School of Informatics. Solutions of partial differential equations are used to form surfaces in three-dimensional space that approximate. A highly diverse set of shapes can be generated that are controlled by the small number of parameters that are associated with the PDE solutions, and these can be fitted to real three-dimensional objects. The most recent application has been in fitting to scanned human faces for recognition purposes. We propose to use this method to characterise polymer surfaces. This will be a highly significance advance over the conventional means of characterising surfaces via the surface roughness, which uses a single number, the mean asperity radius. Rich and realistic approximations of surfaces will be made possible, and ideal surfaces created. Then, robotically controlled measurement and real-time computing will be used to characterise the produced surfaces, compare them with the ideal and thus optimise the micromoulding process.
虽然我们可能认为普通物体的表面是光滑的或平坦的,但在微观层面上研究时,总是有一个相当复杂的景观。会有山丘(“凹凸不平”)和山谷,这些几何物体的大小和形状可能因为各种原因而很重要。在聚合物的微成型中,表面特性可能是控制产品功能的关键特征,例如,由一组非常小的透镜组成的微透镜。因此,需要控制产品的表面,为了自动做到这一点,我们需要用数学方法来描述表面。在布拉德福德的聚合物IRC实验室里,我们有仪器可以测量表面并产生它们的数字图像。每张图像由三维空间中的数千个点组成,操作起来很麻烦。在长序列图像的情况下,例如在大规模生产过程的监控中提出的,将有许多这样的图像文件将占用大量的计算机存储空间。为了将这些文件作为工艺控制和优化方案的一部分进行常规处理,需要使用少量参数来表征表面的方法。信息学学院正在开发一种表征三维表面的方法,即PDE方法。偏微分方程的解用于在三维空间中形成近似的曲面。可以生成高度多样化的形状集合,这些形状由与PDE解决方案相关的少量参数控制,并且可以适合于真实的三维对象。最近的应用是为了识别目的而扫描人脸。我们建议使用这种方法来表征聚合物表面。这将是一个非常重要的进步,传统的方法是通过表面粗糙度来表征表面,它使用一个单一的数字,即平均粗糙半径。丰富和现实的表面近似值将成为可能,并创建理想的表面。然后,机器人控制的测量和实时计算将用于表征生产的表面,将它们与理想的表面进行比较,从而优化微成型过程。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Surface profiling of micro-scale structures using partial differential equations
使用偏微分方程对微尺度结构进行表面分析
Characterization of micro-scale surface features using partial differential equations
使用偏微分方程表征微观表面特征
  • DOI:
    10.1117/12.847757
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    González Castro G
  • 通讯作者:
    González Castro G
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Sweeney其他文献

24.1 MECHANISMS OF PHARMACOLOGICAL TREATMENT EFFICACY IN PEDIATRIC BIPOLAR DISORDERS
  • DOI:
    10.1016/j.jaac.2019.07.793
  • 发表时间:
    2019-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Melissa P. Delbello;Luis Patino Duran;Max Tallman;Christina Klein;CHRISTINA KLEIN;Jeffrey Robert Strawn;Jeffrey Welge;John Sweeney;Thomas Blom;Wenjing Zhang
  • 通讯作者:
    Wenjing Zhang
VALIDATION AND PERFORMANCE OF POINT-OF-CARE RAPID CYP2C19 GENOTYPING IN THE TAILOR-PCI MULTICENTER INTERNATIONAL RANDOMIZED CLINICAL TRIAL
  • DOI:
    10.1016/s0735-1097(21)01386-3
  • 发表时间:
    2021-05-11
  • 期刊:
  • 影响因子:
  • 作者:
    Linnea Baudhuin;Laura Train;Shaun Goodman;Gary Lane;Ryan Lennon;Verghese Mathew;Vishu Murthy;Tamim Nazif;Derek So;John Sweeney;Alan Wu;Charanjit Rihal;Michael Farkouh;Naveen Pereira
  • 通讯作者:
    Naveen Pereira
Epidemiological Review of Black Widow Human Exposures as Reported to the National Poison Data System
  • DOI:
    10.1016/j.wem.2023.08.014
  • 发表时间:
    2023-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Samuel Holstege;Rita Farah;John Sweeney;Austin Murray;Christopher Holstege
  • 通讯作者:
    Christopher Holstege
TRANSLATIONAL STUDIES OF ANTIPSYCHOTIC EFFECTS ON SPATIALWORKING MEMORY IN FIRST EPISODE PATIENTS
  • DOI:
    10.1016/s0920-9964(08)70154-3
  • 发表时间:
    2008-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    John Sweeney;Margaret Harris
  • 通讯作者:
    Margaret Harris
Polygenic Risk for Cardiometabolic Disorders and Peripheral Inflammation in Psychosis
  • DOI:
    10.1016/j.biopsych.2021.02.798
  • 发表时间:
    2021-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jeffrey Bishop;Lusi Zhang;Bin Guo;Yanxun Xu;Leah Rubin;Ney Alliey-Rodriguez;Sarah Keedy;Adam Lee;Baolin Wu;Carol Tamminga;Godfrey Pearlson;Brett Clementz;Matcheri Keshavan;Elliot Gershon;John Sweeney;Paulo Lizano
  • 通讯作者:
    Paulo Lizano

John Sweeney的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Sweeney', 18)}}的其他基金

Thermal contact resistance modelling for polymer processing
聚合物加工的热接触热阻建模
  • 批准号:
    EP/I014551/1
  • 财政年份:
    2011
  • 资助金额:
    $ 13.64万
  • 项目类别:
    Research Grant
NSF East Asia Summer Institutes for US Graduate Students
NSF 东亚美国研究生暑期学院
  • 批准号:
    0513256
  • 财政年份:
    2005
  • 资助金额:
    $ 13.64万
  • 项目类别:
    Fellowship Award

相似海外基金

Data-driven design of Next Generation Cross-Coupling catalysts by Ligand Parameterisation: A Combined Experimental and Computational Approach.
通过配体参数化进行下一代交叉偶联催化剂的数据驱动设计:实验和计算相结合的方法。
  • 批准号:
    2896325
  • 财政年份:
    2023
  • 资助金额:
    $ 13.64万
  • 项目类别:
    Studentship
Developing methods for dynamic contact network parameterisation within individual-level models for infectious disease transmission.
开发传染病传播个体水平模型中动态接触网络参数化的方法。
  • 批准号:
    548001-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 13.64万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Cell designs and testing methods for battery parameterisation
电池参数化的电池设计和测试方法
  • 批准号:
    2610228
  • 财政年份:
    2021
  • 资助金额:
    $ 13.64万
  • 项目类别:
    Studentship
Parameterisation of voltammetry in a machine learning environment
机器学习环境中伏安法的参数化
  • 批准号:
    DP210100606
  • 财政年份:
    2021
  • 资助金额:
    $ 13.64万
  • 项目类别:
    Discovery Projects
Developing methods for dynamic contact network parameterisation within individual-level models for infectious disease transmission.
开发传染病传播个体水平模型中动态接触网络参数化的方法。
  • 批准号:
    548001-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 13.64万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Novel Parameterisation of Battery Digital Twins in the Cloud
云端电池数字孪生的新颖参数化
  • 批准号:
    61243
  • 财政年份:
    2020
  • 资助金额:
    $ 13.64万
  • 项目类别:
    Collaborative R&D
Developing methods for dynamic contact network parameterisation within individual-level models for infectious disease transmission.
开发传染病传播个体水平模型中动态接触网络参数化的方法。
  • 批准号:
    548001-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 13.64万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
The geometric analysis and parameterisation of array of obstacles undergoing high Reynolds number flows
经历高雷诺数流的障碍物阵列的几何分析和参数化
  • 批准号:
    2132271
  • 财政年份:
    2018
  • 资助金额:
    $ 13.64万
  • 项目类别:
    Studentship
Multi-scale Mathematics applied to Parameterisation of Convection
多尺度数学应用于对流参数化
  • 批准号:
    NE/P009468/1
  • 财政年份:
    2017
  • 资助金额:
    $ 13.64万
  • 项目类别:
    Training Grant
Multi-scale Mathematics applied to Parameterisation of Convection
多尺度数学应用于对流参数化
  • 批准号:
    1918553
  • 财政年份:
    2017
  • 资助金额:
    $ 13.64万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了