Combinatorial Optimization Algorithms for Hereditary Graph Classes

遗传图类的组合优化算法

基本信息

  • 批准号:
    EP/H021426/1
  • 负责人:
  • 金额:
    $ 12.27万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2010
  • 资助国家:
    英国
  • 起止时间:
    2010 至 无数据
  • 项目状态:
    已结题

项目摘要

Developing efficient algorithms for solving combinatorial problems has been of great importance to the modern technological society. The applications include diverse areas such as transportation, telecommunication, molecular biology, industrial engineering, etc. Problems such as assigning frequencies to mobile telephones, can be modeled using graphs, and then the problem is reduced to coloring the vertices of the graph so that no two adjacent vertices receive the same color (of course the interest is in the minimum number of colors, and this is called the chromatic number of a graph). Many other applications in the real world reduce to the same coloring problem on graphs. Unfortunately, finding the chromatic number of a graph and some other optimization problems such as finding the size of a largest clique in a graph, are NP-complete in general. This means that it is highly unlikely that these problems can be solved efficiently on a computer (i.e. it is unlikely that polynomial time algorithms for these problems exist). One of the ways to deal with this situation is to find classes of graphs for which these problems can be solved in polynomial time.This project will focus on developing techniques for obtaining combinatorial optimization algorithms by expoliting structural analysis of hereditary graph classes. Many important graph classes are hereditary (i.e. closed under taking induced subgraphs), such as perfect graphs. For a difficult optimization problem, such as finding the chromatic number of a graph or the size of its largest clique, to be solvable in polynomial time for a given class, it means that this class must have some strong structure. The proposed research is about trying to understand what is this strong structure that will allow polynomial time combinatorial optimization algorithms, and developing techniques for obtaining the desired structure theorems and using them in algorithms.
开发解决组合问题的有效算法对于现代技术社会非常重要。应用包括交通、电信、分子生物学、工业工程等不同领域。诸如为移动电话分配频率之类的问题可以使用图进行建模,然后将问题简化为对图的顶点进行着色,以便没有两个相邻顶点接收相同的颜色(当然,兴趣在于颜色的最小数量,这称为图的色数)。现实世界中的许多其他应用程序都会简化为图形上的相同着色问题。不幸的是,求图的色数和其他一些优化问题(例如求图中最大团的大小)通常是 NP 完全问题。这意味着这些问题不太可能在计算机上有效解决(即不太可能存在针对这些问题的多项式时间算法)。处理这种情况的方法之一是找到可以在多项式时间内解决这些问题的图类。该项目将重点开发通过利用遗传图类的结构分析来获得组合优化算法的技术。许多重要的图类是遗传的(即在导出子图下封闭),例如完美图。对于一个困难的优化问题,例如找到图的色数或最大团的大小,对于给定类,要在多项式时间内解决,这意味着该类必须具有某种强大的结构。拟议的研究旨在尝试了解这种允许多项式时间组合优化算法的强大结构是什么,并开发获得所需结构定理并将其用于算法的技术。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Detecting 2-joins faster
更快地检测 2-join
  • DOI:
    10.48550/arxiv.1107.3977
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Charbit P
  • 通讯作者:
    Charbit P
Vertex elimination orderings for hereditary graph classes
遗传图类的顶点消除顺序
  • DOI:
    10.48550/arxiv.1205.2535
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aboulker P
  • 通讯作者:
    Aboulker P
Linear Balanceable and Subcubic Balanceable Graphs*
线性平衡图和次三次平衡图*
  • DOI:
    10.1002/jgt.21728
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Aboulker P
  • 通讯作者:
    Aboulker P
Coloring perfect graphs with no balanced skew-partitions
为没有平衡倾斜分区的完美图形着色
  • DOI:
    10.48550/arxiv.1308.6444
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chudnovsky M
  • 通讯作者:
    Chudnovsky M
Decomposition of even-hole-free graphs with star cutsets and 2-joins
具有星割集和 2-连接的偶孔无图分解
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

K Vuskovic其他文献

K Vuskovic的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('K Vuskovic', 18)}}的其他基金

DMS-EPSRC - The Power of Graph Structure
DMS-EPSRC - 图结构的力量
  • 批准号:
    EP/V002813/1
  • 财政年份:
    2021
  • 资助金额:
    $ 12.27万
  • 项目类别:
    Research Grant
Structure of Hereditary Graph Classes and Its Algorithmic Consequences
遗传图类的结构及其算法结果
  • 批准号:
    EP/N019660/1
  • 财政年份:
    2016
  • 资助金额:
    $ 12.27万
  • 项目类别:
    Research Grant
Algorithms for Perfect Graph and Other Hereditary Graph Classes
完美图和其他遗传图类的算法
  • 批准号:
    EP/K016423/1
  • 财政年份:
    2013
  • 资助金额:
    $ 12.27万
  • 项目类别:
    Research Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
  • 批准号:
    70601028
  • 批准年份:
    2006
  • 资助金额:
    7.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Efficient Algorithms for Combinatorial Optimization Problems in Networks and Beyond
网络及其他领域组合优化问题的有效算法
  • 批准号:
    RGPIN-2017-03956
  • 财政年份:
    2022
  • 资助金额:
    $ 12.27万
  • 项目类别:
    Discovery Grants Program - Individual
Approximation Algorithms for Combinatorial Optimization Problems
组合优化问题的近似算法
  • 批准号:
    RGPIN-2020-06423
  • 财政年份:
    2022
  • 资助金额:
    $ 12.27万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithms for hard quadratic combinatorial optimization problems and linkages with quantum bridge analytics
硬二次组合优化问题的算法以及与量子桥分析的联系
  • 批准号:
    RGPIN-2021-03190
  • 财政年份:
    2022
  • 资助金额:
    $ 12.27万
  • 项目类别:
    Discovery Grants Program - Individual
A study on practical algorithms for combinatorial optimization based on approximate submodularity
基于近似子模性的组合优化实用算法研究
  • 批准号:
    22K17857
  • 财政年份:
    2022
  • 资助金额:
    $ 12.27万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Efficient Algorithms for Combinatorial Optimization Problems in Networks and Beyond
网络及其他领域组合优化问题的有效算法
  • 批准号:
    RGPIN-2017-03956
  • 财政年份:
    2021
  • 资助金额:
    $ 12.27万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithms for hard quadratic combinatorial optimization problems and linkages with quantum bridge analytics
硬二次组合优化问题的算法以及与量子桥分析的联系
  • 批准号:
    RGPIN-2021-03190
  • 财政年份:
    2021
  • 资助金额:
    $ 12.27万
  • 项目类别:
    Discovery Grants Program - Individual
Theory and algorithms for combinatorial optimization under uncertainty
不确定性下的组合优化理论与算法
  • 批准号:
    21H03397
  • 财政年份:
    2021
  • 资助金额:
    $ 12.27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Approximation Algorithms for Combinatorial Optimization Problems
组合优化问题的近似算法
  • 批准号:
    RGPIN-2020-06423
  • 财政年份:
    2021
  • 资助金额:
    $ 12.27万
  • 项目类别:
    Discovery Grants Program - Individual
Efficient Algorithms for Combinatorial Optimization Problems in Networks and Beyond
网络及其他领域组合优化问题的有效算法
  • 批准号:
    RGPIN-2017-03956
  • 财政年份:
    2020
  • 资助金额:
    $ 12.27万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: EAGER-QSA: Variational Monte-Carlo-Inspired Quantum Algorithms for Many-Body Systems and Combinatorial Optimization
合作研究:EAGER-QSA:用于多体系统和组合优化的变分蒙特卡罗量子算法
  • 批准号:
    2038030
  • 财政年份:
    2020
  • 资助金额:
    $ 12.27万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了