Classical Realizability and Quantum Representability: Truncated Moment Problems in Statistical Physics and Quantum Chemistry

经典可实现性和量子可表示性:统计物理和量子化学中的截断矩问题

基本信息

  • 批准号:
    EP/H022767/1
  • 负责人:
  • 金额:
    $ 12.92万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2010
  • 资助国家:
    英国
  • 起止时间:
    2010 至 无数据
  • 项目状态:
    已结题

项目摘要

Complex systems, like liquids made out of molecules, large molecules made out of atoms, lawn made out of grass, etc. are impossible to describe fully. In fact, such a description it is not even desirable, as one would be overwhelmed by information impossible to interpret. Typically, a few characteristics of the system, like density profiles, relative frequencies of inter-object distances, are of great importance. An effective way of treating such complex systems is to concentrate on the properties of these characteristics. In such an approach a system of equations describing the characteristics is derived in some ad hoc manner. The question is then: are the solutions of these equations still compatible with the originally considered complex system? In other words, do states of the complex system exist, which would give rise to these characteristics? As an example, if the effective equations predicted a negative density of particles, then the answer would be 'no'. For more complicated characteristics or collections of characteristics, one cannot expect the relations between them, which are usually in the form of inequalities, to be so obvious. The realizability and representability problems are to identify these conditions and to determine which putative characteristics can in fact be realized by a state of the underlying system.Realizability and representability arise repeatedly in different areas, thus they seem to be a very promising viewpoint on complex systems. It is also timely to attack these problems, due to a recent interest in these problems as in many different areas of statistical mechanics, like jamming, random packing, optimal packing in high dimensions, and heterogeneous materials, as well as in quantum chemistry. Progress is hindered by a lack of understanding of the underlying mathematical structure of these problems, both of which can be interpreted as high-dimensional truncated moment problems. Even the two dimensional case is already known to be very difficult. Ideally, one would obtain an approach which permits one to derive the microscopic interactions from macroscopic measurements.One can give a theoretical description of all inequalities for putative correlation functions characterizing realizability based on a general approach coming from the theory of truncated moment problems. This description is unfortunately so indirect that only a few conditions are known explicitly. It is a very hard problem to express further conditions in an explicit manner. Beside its practical importance this last question provides an important connection between the project and areas of pure mathematics.
复杂的系统,如由分子制成的液体、由原子制成的大分子、由草制成的草坪等,都不可能完全描述。事实上,这样的描述甚至是不可取的,因为一个人会被无法解释的信息淹没。通常,系统的几个特征,如密度分布、物体间距离的相对频率,是非常重要的。处理这类复杂系统的一个有效方法是专注于这些特性的特性。在这种方法中,以某种特别的方式推导出描述特性的方程系统。那么问题是:这些方程的解仍然与最初考虑的复杂系统兼容吗?换句话说,复杂系统的状态是否存在,这些状态会导致这些特征?例如,如果有效方程预测粒子密度为负,那么答案将是否定的。对于更复杂的特征或特征集合,人们不能指望它们之间的关系如此明显,这种关系通常是以不平等的形式存在的。可实现性和可表现性问题就是识别这些条件,并确定哪些假定的特征实际上可以通过底层系统的状态来实现,可实现性和可表征性在不同的领域反复出现,因此它们似乎是一个非常有前途的复杂系统观点。现在也是解决这些问题的时候了,因为最近人们对这些问题感兴趣,就像在统计力学的许多不同领域,如堵塞、随机堆积、高维最优堆积、非均质材料以及量子化学。由于缺乏对这些问题的基本数学结构的理解,进展受到阻碍,这两个问题都可以解释为高维截断矩问题。即使是二维的情况也已经知道是非常困难的。理想情况下,人们可以得到一种方法,它允许人们从宏观测量中获得微观相互作用,人们可以基于截断矩理论中的一般方法,给出关于假定的可实现相关函数的所有不等式的理论描述。不幸的是,这种描述是如此间接,以至于只有几种情况是明确知道的。用明确的方式表达进一步的条件是一个非常困难的问题。除了它的实际重要性之外,最后一个问题还提供了项目和纯数学领域之间的重要联系。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The full infinite dimensional moment problem on semi-algebraic sets of generalized functions
广义函数半代数集的全无限维矩问题
  • DOI:
    10.1016/j.jfa.2014.06.012
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Infusino M
  • 通讯作者:
    Infusino M
Relevance of sampling schemes in light of Ruelle's linear response theory
根据 Ruelle 线性响应理论采样方案的相关性
  • DOI:
    10.1088/0951-7715/25/5/1311
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Lucarini V
  • 通讯作者:
    Lucarini V
The Truncated Moment Problem on $\mathbb{N}_0$
$mathbb{N}_0$ 上的截断矩问题
  • DOI:
    10.48550/arxiv.1504.02989
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Infusino M
  • 通讯作者:
    Infusino M
The full moment problem on subsets of probabilities and point configurations
概率子集和点配置的全矩问题
Translation invariant realizability problem on the $d-$dimensional lattice: an explicit construction
$d-$维格上的平移不变可实现性问题:显式构造
  • DOI:
    10.48550/arxiv.1510.02954
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Caglioti E
  • 通讯作者:
    Caglioti E
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tobias Kuna其他文献

Variational techniques for a one-dimensional energy balance model
一维能量平衡模型的变分技术
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G. Sarto;Jochen Br¨ocker;Franco Flandoli;Tobias Kuna
  • 通讯作者:
    Tobias Kuna
Lagrange Inversion and Combinatorial Species with Uncountable Color Palette
  • DOI:
    10.1007/s00023-020-01013-0
  • 发表时间:
    2021-02-11
  • 期刊:
  • 影响因子:
    1.300
  • 作者:
    Sabine Jansen;Tobias Kuna;Dimitrios Tsagkarogiannis
  • 通讯作者:
    Dimitrios Tsagkarogiannis
Generalized early warning signals in multivariate and gridded data with an application to tropical cyclones.
多变量和网格数据中的广义预警信号及其在热带气旋中的应用。
  • DOI:
    10.1063/1.5093495
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    J. Prettyman;Tobias Kuna;Valerie Livina
  • 通讯作者:
    Valerie Livina

Tobias Kuna的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

The Realizability of the Double-Detonation Mechanism for Type Ia Supernovae
Ia型超新星双爆机制的可实现性
  • 批准号:
    2307442
  • 财政年份:
    2023
  • 资助金额:
    $ 12.92万
  • 项目类别:
    Standard Grant
Verification of the realizability of of a GHz-band stimulated resonant photon scattering experiment toward search for a dark energy source
验证 GHz 频段受激共振光子散射实验寻找暗能源的可实现性
  • 批准号:
    19K21880
  • 财政年份:
    2019
  • 资助金额:
    $ 12.92万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Cooperative Reactive System Synthesis Based on Necessary Conditions of Realizability
基于可实现性必要条件的协同反应系统综合
  • 批准号:
    17K17763
  • 财政年份:
    2017
  • 资助金额:
    $ 12.92万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Realizability of 3D geo-stress sensing device via electrical resistivity under contact pressure in granular media
通过颗粒介质中接触压力下的电阻率实现 3D 地应力传感装置
  • 批准号:
    17K18904
  • 财政年份:
    2017
  • 资助金额:
    $ 12.92万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Proof system for Realizability Decision of Reactive System Specification described by Temporal Logic
时态逻辑描述的反应式系统规范可实现性决策的证明系统
  • 批准号:
    16K00010
  • 财政年份:
    2016
  • 资助金额:
    $ 12.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Efficient realizability verification of reactive system specifications without approximation
无需近似即可有效验证反应式系统规范的可实现性
  • 批准号:
    15K15969
  • 财政年份:
    2015
  • 资助金额:
    $ 12.92万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Bifurcations: traveling waves in reaction-diffusion systems, and realizability for delay differential equations
分岔:反应扩散系统中的行波以及延迟微分方程的可实现性
  • 批准号:
    194296-2010
  • 财政年份:
    2015
  • 资助金额:
    $ 12.92万
  • 项目类别:
    Discovery Grants Program - Individual
Bifurcations: traveling waves in reaction-diffusion systems, and realizability for delay differential equations
分岔:反应扩散系统中的行波以及延迟微分方程的可实现性
  • 批准号:
    194296-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 12.92万
  • 项目类别:
    Discovery Grants Program - Individual
Realizability Decision and Program Synthesis for Reactive System Specification described by Temporal Logic
时态逻辑描述的反应式系统规范的可实现性决策和程序综合
  • 批准号:
    25330008
  • 财政年份:
    2013
  • 资助金额:
    $ 12.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Bifurcations: traveling waves in reaction-diffusion systems, and realizability for delay differential equations
分岔:反应扩散系统中的行波以及延迟微分方程的可实现性
  • 批准号:
    194296-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 12.92万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了