Uncovering the Electroactivity of Novel sp2 Carbon Materials through Quantitative High Resolution Visualisation

通过定量高分辨率可视化揭示新型 sp2 碳材料的电活性

基本信息

  • 批准号:
    EP/H023909/1
  • 负责人:
  • 金额:
    $ 68.44万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2010
  • 资助国家:
    英国
  • 起止时间:
    2010 至 无数据
  • 项目状态:
    已结题

项目摘要

Electrochemistry is a key enabling science of the 21st century, underpinning important topics and technologies such as energy (conversion and storage), catalysis/electrocatalysis, and sensing (chemical and biochemical). All of these applications demand new electrode materials which can outperform existing technologies and offer environmental benefits. In this context, carbon is very attractive: while (precious) metals have to be mined and processed (with high energy costs), carbon materials can be grown from carbon-containing gases quickly, cheaply and efficiently. The recent emergence of new forms of carbon, in particular, graphene (a one-atom-thick planar sheet of sp2 carbon atoms in a honeycomb arrangement) and single-walled carbon nanotubes (SWNTs), which may be viewed as graphene rolled into tubes with a diameter on the nanometer (one-billionth of a meter) scale, presents an exciting opportunity for electrochemistry. SWNTs have displayed astonishing properties for electrochemical (current-sensing) detection, and it is anticipated that graphene will offer even better prospects for electroanalysis and electrocatalysis. Both materials constitute particularly interesting platforms for the assembly of catalysts (metal, semiconductor, enzymes, cells, etc.) and could find application as transparent electrodes in solar cells. These applications, and many others, require that the fundamental aspects of charge transfer (current flow) between carbon electrodes and molecules in solution is understood. This poses a major experimental challenge. While having long-range order, sp2 carbon materials (graphene, graphite and SWNTs) possess surface features (defects and/or steps); the extent to which these, rather than the basal surface, contribute to the overall activity is a major open question and a matter of considerable debate and importance.This proposal will take on the challenge of elucidating, for the first time, the true activity of sp2 carbon materials through the development and application of the highest spatial-resolution electrochemical imaging techniques ever. These techniques will be able to measure electrochemical activity across a surface on a scale which has not been possible hitherto. The techniques are based on the 'scanned probe' concept in which a nanoscale-probe is moved across a surface; in this case, it will measure the electrochemical activity in minute detail and relate it to the underlying surface properties (structural and electrical), via the use of complementary microscopy methods. We expect to obtain definitive proof of the origin of the activity of related sp2 carbon materials and to determine whether charge transfer is driven only at defects. Answering this question for a wide range of important electrochemical processes is vital for the advancement of the field and will reveal the best strategies for the future development of sp2 carbon-based electrochemical technologies.The uncertainty surrounding the active sites on solid electrodes is widespread and of a general nature, and we fully expect the techniques proposed to be applied extensively in electrochemistry and materials science, where one seeks to understand surface reactivity. Downstream applications of the techniques could include understanding corrosion and supported fuel cell catalysts. Ultimately, the techniques could find considerable use in the life sciences, including probing living systems and organelles, where one would be able to measure chemical fluxes on a minute scale. This proposal is therefore of fundamental importance to the basic understanding of new materials, as well as more broadly to electrochemistry and surface reactivity. It will lead to new methods of sensing and electrochemical transformations, and will provide scientists with novel high resolution techniques with far-reaching multidisciplinary impact.
电化学是21世纪一门关键的使能科学,它支撑着重要的主题和技术,如能源(转换和储存)、催化/电催化和传感(化学和生化)。所有这些应用都需要新的电极材料,这些材料可以超越现有技术,并提供环境效益。在这种情况下,碳非常有吸引力:虽然(贵金属)必须开采和加工(能源成本很高),但碳材料可以快速、廉价和高效地从含碳气体中生长出来。最近新形式碳的出现,特别是石墨烯(一种一个原子厚的蜂窝状sp2碳原子平面片)和单壁碳纳米管(SWNTs),可以被视为石墨烯轧制成直径在纳米(十亿分之一米)尺度的管,为电化学提供了一个令人兴奋的机会。单壁碳纳米管在电化学(电流传感)检测方面表现出惊人的性能,石墨烯有望在电分析和电催化方面提供更好的前景。这两种材料构成了催化剂(金属、半导体、酶、细胞等)组装的特别有趣的平台。并可用作太阳能电池的透明电极。这些应用,以及其他许多应用,都需要了解碳电极和溶液中分子之间电荷转移(电流流动)的基本方面。这构成了一个重大的试验性挑战。虽然sp2碳材料(石墨烯、石墨和单壁碳纳米管)具有长程有序性,但它们具有表面特征(缺陷和/或台阶);这些而不是基面对整体活性的贡献程度是一个重大的开放问题,也是一个相当有争议和重要的问题。这项提议将通过开发和应用有史以来最高空间分辨率的电化学成像技术来首次承担阐明sp2碳材料的真实活性的挑战。这些技术将能够在迄今为止不可能的范围内测量表面上的电化学活动。这些技术基于“扫描探针”的概念,即纳米级的探针在表面上移动;在这种情况下,它将测量微小细节的电化学活动,并通过使用互补的显微镜方法将其与潜在的表面属性(结构和电气)联系起来。我们希望获得相关sp2碳材料活性来源的确凿证据,并确定电荷转移是否仅在缺陷处驱动。回答广泛的重要电化学过程的这个问题对于该领域的发展是至关重要的,并将揭示SP2碳基电化学技术未来发展的最佳策略。围绕固体电极上的活性中心的不确定性是普遍存在的,我们完全期待所提出的技术在电化学和材料科学中被广泛应用,在那里人们试图了解表面反应性。这些技术的下游应用可能包括了解腐蚀和负载型燃料电池催化剂。最终,这些技术可能会在生命科学中得到相当大的应用,包括探测生命系统和细胞器,在那里人们将能够在微小的尺度上测量化学通量。因此,这一建议对于对新材料的基本理解以及更广泛的电化学和表面反应性都是至关重要的。它将导致新的传感和电化学转换方法,并将为科学家提供具有深远多学科影响的新的高分辨率技术。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Selection, characterisation and mapping of complex electrochemical processes at individual single-walled carbon nanotubes: the case of serotonin oxidation.
单个单壁碳纳米管复杂电化学过程的选择、表征和绘图:血清素氧化的情况。
  • DOI:
    10.1039/c4fd00054d
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Güell AG
  • 通讯作者:
    Güell AG
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pat Unwin其他文献

Pat Unwin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pat Unwin', 18)}}的其他基金

High Throughput Atom-by-Atom Electrochemistry
高通量原子逐原子电化学
  • 批准号:
    EP/V047981/1
  • 财政年份:
    2021
  • 资助金额:
    $ 68.44万
  • 项目类别:
    Research Grant

相似海外基金

Harnessing electroactivity in nanoporous materials
利用纳米多孔材料的电活性
  • 批准号:
    FT170100283
  • 财政年份:
    2018
  • 资助金额:
    $ 68.44万
  • 项目类别:
    ARC Future Fellowships
Synthesis and applications of conjugated polymers with controllable microporosity and electroactivity
微孔率和电活性可控共轭聚合物的合成及应用
  • 批准号:
    312643-2011
  • 财政年份:
    2015
  • 资助金额:
    $ 68.44万
  • 项目类别:
    Discovery Grants Program - Individual
Synthesis and applications of conjugated polymers with controllable microporosity and electroactivity
微孔率和电活性可控共轭聚合物的合成及应用
  • 批准号:
    312643-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 68.44万
  • 项目类别:
    Discovery Grants Program - Individual
Synthesis and applications of conjugated polymers with controllable microporosity and electroactivity
微孔率和电活性可控共轭聚合物的合成及应用
  • 批准号:
    312643-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 68.44万
  • 项目类别:
    Discovery Grants Program - Individual
Synthesis and applications of conjugated polymers with controllable microporosity and electroactivity
微孔率和电活性可控共轭聚合物的合成及应用
  • 批准号:
    312643-2011
  • 财政年份:
    2012
  • 资助金额:
    $ 68.44万
  • 项目类别:
    Discovery Grants Program - Individual
Synthesis and applications of conjugated polymers with controllable microporosity and electroactivity
微孔率和电活性可控共轭聚合物的合成及应用
  • 批准号:
    312643-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 68.44万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了