Quantum simulation of mesoscopic systems with highly excited atoms and ions

高激发原子和离子介观系统的量子模拟

基本信息

  • 批准号:
    EP/H024069/1
  • 负责人:
  • 金额:
    $ 12.87万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2010
  • 资助国家:
    英国
  • 起止时间:
    2010 至 无数据
  • 项目状态:
    已结题

项目摘要

At ultracold temperatures (within a few billionths of a degree of Absolute Zero) and on very small scales (nanometres) quantum effects dominate the properties of physical systems. Even systems with relatively few components might be so complex that their properties can be calculated neither analytically nor numerically. Moreover, even experiments may yield little information about the systems. This becomes even more dramatic if many particle systems are considered, e.g. condensed matter systems such as electrons in a metal. In particular, if interactions between the particles are strong, the quantum properties are very difficult to determine and to characterize experimentally and theoretically.One approach to gain information about complex quantum systems which are not easily accessible is to mimic - or simulate - them. Here, the original system parameters are replaced by ones which can be more precisely monitored and manipulated. In recent years it has turned out that gases of ultracold atoms are particularly useful to perform this task. Electric, magnetic and optical fields are used to create potential landscapes in which the atomic motion takes place. For example, counter propagating laser beams give rise to a periodic potential which is equivalent to the scenario encountered by electrons in a crystalline solid. Moreover, the interaction between the atoms is tunable by applying small magnetic fields (using the so-called Feshbach resonances). Here, attraction, repulsion or even no interaction is achievable. Ultracold atoms thus can serve as a building block for a quantum simulator of condensed matter systems where the atoms assume the role of the electrons. One major achievement of such a simulator was the study of a phase transition in a gas of ultracold atoms in an optical lattice from a Mott-insulator to a superfluid. In the former case the atoms are tightly trapped in the individual lattice sites whereas in the latter case a non-classical state is formed which extends over the entire lattice.In the proposed work we theoretically investigate a quantum simulator which mimics mesoscopic systems on fast timescales. This interdisciplinary research project is of direct relevance to condensed matter physics, molecular physics and ultracold chemistry. It will deepen our understanding of physical processes that take place in molecules, clusters and small spin chains. The basic building-block of the quantum simulator comprises atoms or ions held in traps with a spacing of several micrometers - large enough for laser beams to intreract with (address) individual atoms. In this simulator, the ultracold atoms define an underlying lattice structure in which the electronic dynamics takes place. This is directly analogous to a crystalline solid or a molecule. However, unlike in a 'conventional' molecule individual nuclei can be manipulated.The aim of the project is to explore these systems, to characterize their properties and to illuminate their potential to simulate mesoscopic systems. This opens a doorway to direct monitoring of fundamental physical processes, such as charge transfer, which normally take place hidden from the observer's eye. A key feature of the proposal is a strong interaction with the experiments.
在超冷温度(绝对零度的十亿分之几度)和非常小的尺度(纳米)上,量子效应主导着物理系统的性质。即使是组分相对较少的系统也可能非常复杂,以至于它们的性质既不能用解析法也不能用数值法计算。此外,即使是实验也可能产生关于系统的很少信息。如果考虑许多粒子系统,例如金属中的电子等凝聚态系统,这一点就变得更加引人注目。特别是,如果粒子之间的相互作用很强,量子特性就很难在实验和理论上确定和表征。要获得关于复杂量子系统的信息,一种方法是模仿或模拟它们。在这里,原始的系统参数被可以更精确地监控和操纵的参数所取代。近年来,事实证明,超冷原子气体对于执行这项任务特别有用。电场、磁场和光场被用来创造原子运动发生的潜在景观。例如,反向传播的激光束会产生一个周期性的电势,这相当于电子在晶体固体中遇到的情况。此外,原子之间的相互作用可以通过施加小磁场(使用所谓的Feshbach共振)来调节。在这里,吸引、排斥甚至没有相互作用都是可以实现的。因此,超冷原子可以作为凝聚态系统的量子模拟器的基石,在凝聚态系统中,原子扮演电子的角色。这种模拟器的一个主要成就是研究了光学晶格中超冷原子气体从莫特绝缘体到超流体的相变。在前一种情况下,原子被紧紧地困在单个晶格位置,而在后一种情况下,形成一个非经典状态,它延伸到整个lattice.In建议的工作,我们从理论上研究了一个量子模拟器,它模仿介观系统的快速时间尺度。这个跨学科的研究项目与凝聚态物理、分子物理和超冷化学直接相关。它将加深我们对分子、团簇和小自旋链中发生的物理过程的理解。量子模拟器的基本组成部分包括原子或离子,这些原子或离子被囚禁在间距为几微米的陷阱中,这些陷阱大到足以让激光束与单个原子相互作用(寻址)。在这个模拟器中,超冷原子定义了电子动力学发生的基本晶格结构。这直接类似于结晶固体或分子。然而,与“传统”分子不同的是,单个原子核可以被操纵。该项目的目的是探索这些系统,表征它们的特性,并阐明它们模拟介观系统的潜力。这为直接监测基本物理过程打开了一扇大门,例如电荷转移,这通常是在观察者的眼睛看不到的情况下发生的。该提案的一个关键特点是与实验的强烈互动。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantum trajectory phase transitions in the micromaser.
微脉泽中的量子轨迹相变。
Thermalization of a strongly interacting closed spin system: from coherent many-body dynamics to a Fokker-Planck equation.
  • DOI:
    10.1103/physrevlett.108.110603
  • 发表时间:
    2011-08
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    C. Ates;J. P. Garrahan;Igor Lesanovsky
  • 通讯作者:
    C. Ates;J. P. Garrahan;Igor Lesanovsky
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Igor Lesanovsky其他文献

Applications of Gravity Assists in the Bicircular and Bielliptic Restricted Four-Body Problem
重力辅助在双圆和双椭圆受限四体问题中的应用
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    桂 法称;Igor Lesanovsky;Y. Noguchi;K. Oshima and T. Yanao
  • 通讯作者:
    K. Oshima and T. Yanao
Generalized Dicke nonequilibrium dynamics in trapped ions. Physical Review Letters, 112 (2). 023603.
捕获离子中的广义迪克非平衡动力学。
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Genway;Weibin Li;C. Ates;Benjamin P. Lanyon;Igor Lesanovsky
  • 通讯作者:
    Igor Lesanovsky
Superfluid flow past an obstacle in annular Bose–Einstein condensates
超流体流过环形玻色-爱因斯坦凝聚中的障碍物
Spontaneous creation of nonzero-angular-momentum modes in tunnel-coupled two-dimensional degenerate Bose gases
隧道耦合二维简并玻色气体中非零角动量模式的自发产生
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tom Montgomery;Robin Scott;Igor Lesanovsky;Mark Fromhold
  • 通讯作者:
    Mark Fromhold
Shuttling of Rydberg Ions for Fast Entangling Operations.
用于快速纠缠操作的里德伯离子穿梭。
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    J. Vogel;Weibin Li;A. Mokhberi;Igor Lesanovsky;Ferdinand Schmidt
  • 通讯作者:
    Ferdinand Schmidt

Igor Lesanovsky的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Igor Lesanovsky', 18)}}的其他基金

Rydberg excited Calcium Ions for Quantum Interactions
里德伯格激发钙离子进行量子相互作用
  • 批准号:
    EP/J007854/1
  • 财政年份:
    2011
  • 资助金额:
    $ 12.87万
  • 项目类别:
    Research Grant

相似国自然基金

Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
基于WRF-Mosaic近似不同下垫面类型改变对区域能量和水分循环影响的集合模拟
  • 批准号:
    41775087
  • 批准年份:
    2017
  • 资助金额:
    68.0 万元
  • 项目类别:
    面上项目
嵌段共聚物多级自组装的多尺度模拟
  • 批准号:
    20974040
  • 批准年份:
    2009
  • 资助金额:
    33.0 万元
  • 项目类别:
    面上项目
微扰量子色动力学方法及在强子对撞机的应用和暗物质的研究
  • 批准号:
    10975004
  • 批准年份:
    2009
  • 资助金额:
    38.0 万元
  • 项目类别:
    面上项目
孔隙介质中化学渗流溶解面非稳定性的理论分析与数值模拟实验研究
  • 批准号:
    10872219
  • 批准年份:
    2008
  • 资助金额:
    35.0 万元
  • 项目类别:
    面上项目
Kinetic Monte Carlo 模拟薄膜生长机理的研究
  • 批准号:
    10574059
  • 批准年份:
    2005
  • 资助金额:
    12.0 万元
  • 项目类别:
    面上项目
变压吸附中真空脱附过程的传质传热规律研究
  • 批准号:
    20576028
  • 批准年份:
    2005
  • 资助金额:
    10.0 万元
  • 项目类别:
    面上项目

相似海外基金

Revealing neural circuits underlying zebrafish behavior using mesoscopic light field microscopy
使用介观光场显微镜揭示斑马鱼行为背后的神经回路
  • 批准号:
    10300922
  • 财政年份:
    2021
  • 资助金额:
    $ 12.87万
  • 项目类别:
Hybrid AI-Simulation Mesoscopic Material Design
混合人工智能仿真细观材料设计
  • 批准号:
    2327699
  • 财政年份:
    2019
  • 资助金额:
    $ 12.87万
  • 项目类别:
    Studentship
Bidirectional optical-acoustic mesoscopic neural interface for image-guided neuromodulation in behaving animals
用于行为动物图像引导神经调节的双向光声介观神经接口
  • 批准号:
    10117461
  • 财政年份:
    2018
  • 资助金额:
    $ 12.87万
  • 项目类别:
Mesoscopic modelling and simulation of properties of additively manufactured metallic parts (C05)
增材制造金属零件性能的细观建模与仿真(C05)
  • 批准号:
    275614810
  • 财政年份:
    2015
  • 资助金额:
    $ 12.87万
  • 项目类别:
    Collaborative Research Centres
Mesoscopic Biomarkers of Neurodegeneration and Inflammation with Diffusion MRI
弥散 MRI 神经退行性变和炎症的细观生物标志物
  • 批准号:
    10673125
  • 财政年份:
    2014
  • 资助金额:
    $ 12.87万
  • 项目类别:
Mesoscopic Biomarkers of Neurodegeneration and Inflammation with Diffusion MRI
弥散 MRI 神经退行性变和炎症的细观生物标志物
  • 批准号:
    10022344
  • 财政年份:
    2014
  • 资助金额:
    $ 12.87万
  • 项目类别:
Mesoscopic Biomarkers of Neurodegeneration and Inflammation with Diffusion MRI
弥散 MRI 神经退行性变和炎症的细观生物标志物
  • 批准号:
    10457453
  • 财政年份:
    2014
  • 资助金额:
    $ 12.87万
  • 项目类别:
Mesoscopic Biomarkers of Neurodegeneration and Inflammation with Diffusion MRI
弥散 MRI 神经退行性变和炎症的细观生物标志物
  • 批准号:
    10251994
  • 财政年份:
    2014
  • 资助金额:
    $ 12.87万
  • 项目类别:
Mesoscopic simulation of selective beam melting (B04)
选择性束熔化的细观模拟(B04)
  • 批准号:
    203342946
  • 财政年份:
    2011
  • 资助金额:
    $ 12.87万
  • 项目类别:
    Collaborative Research Centres
Mesoscopic Many Body Simulation of Fracture and Fractured Inhomogeneous Materials with Granular Microstructure (B03)
具有颗粒微观结构的断裂和断裂非均匀材料的细观多体模拟(B03)
  • 批准号:
    35654807
  • 财政年份:
    2007
  • 资助金额:
    $ 12.87万
  • 项目类别:
    Collaborative Research Centres
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了