Spectral-type problems and nonlinear boundary value problems
谱型问题和非线性边值问题
基本信息
- 批准号:EP/H030514/1
- 负责人:
- 金额:$ 32.57万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2010
- 资助国家:英国
- 起止时间:2010 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A vast range of problems in applied mathematics can be modelled usingdifferential equations. Whilst simple models can be constructed using socalled `linear' differential equations, more realistic models usuallydemand the use of nonlinear equations. However, the nonlinearities insuch equations can range from being relatively simple to beinghopelessly complicated, so to make progress with any sort of theory ofsuch equations one must impose restrictions on the type of nonlinearityconsidered.A type of problem which is amenable to considerable analysis is one inwhich the nonlinearity is `asymptotically linear' - this means that whenthe unknown variable becomes large the problem essentially behaveslinearly, and we can then use the well understood linear theory toprovide information about the nonlinear problem. However, the assumptionof asymptotic linearity means that the nonlinear term behaves in thesame way when the unknown variable, say u, is both large and positive,and large and negative. Often, this is unrealistic, and in fact manyproblems have a certain type of (nearly) linear behaviour when u islarge and positive, and a different type of linear behaviour when u islarge and negative. Linearities with this type of behaviour are termed`jumping'. Jumping nonlinearities arise naturally in many applications,such as elasticity problems where the elastic constant involved isdifferent when the material is being stretched and compressed. Forexample, wires may be strong under tension, but have no resistance tocompression. Indeed, the theory of jumping nonlinearities has beenapplied to suspension bridges (a jumping nonlinearity model is relevanthere due to the cable supports for the road deck of the bridge), andleads to an explanation for the well-known Tacoma bridge collapse thatis different to the standardAlthough at first sight, jumping nonlinearities may seem to be only asimple generalisation of asymptotically linear problems, they are,surprisingly, much more complicated to deal with, and have been activelystudied since the late 70's. A generalisation of the usual idea of thespectrum of a linear operator to deal with jumping nonlinearities wasintroduced in about 1977. This was called the Fucik spectrum, and anextension of this, called the set of `half-eigenvalues' has been studiedmore recently. Each of these sets has been studied extensively, and leadto results that have no counterpart in linear or asymptotically linearproblems. In particular, for periodic problems the structure of theFucik spectrum or the set of half-eigenvalues is still not understood,although recent results show that this structure is much morecomplicated than in the linear case.Most work on these sets has dealt with the semilinear case, where astandard linear, second (or higher) order, elliptic differentialoperator has a jumping nonlinearity added to it. However, there is aquasilinear generalisation of such linear differential operators calledthe p-Laplacian. The p-Laplacian arises in many applications, such asnon-Newtonian fluid flows and percolation problems, and is currentlyunder intense study by mathematicians worldwide (as is shown bysearching for `p-Laplacian' on mathscinet). Many properties of the usualLaplacian extend to the p-Laplacian, but not all do so. In particular,since the p-Laplacian has a positive homogeneity property, it makessense to define a spectrum for it, and some of the spectral propertiesof the linear problem generalise to the p-Laplacian.It is our view that the interaction of the p-Laplacian and jumpingnon-linearities will provide fascinating and rich solution behaviour andwill provide a fundamental framework from which a better understandingof more complex applications can be obtained.
应用数学中的许多问题都可以用微分方程来模拟.虽然简单的模型可以用所谓的“线性”微分方程来构造,但更现实的模型通常需要使用非线性方程。然而,这种方程的非线性可以从相对简单到完全复杂,因此,要想在这种方程的任何理论上取得进展,就必须对所考虑的非线性类型加以限制。有一类问题可以进行大量的分析,其中的非线性是“渐近线性的”--这意味着当未知变量变大时,问题基本上是线性的,然后我们就可以用我们熟知的线性理论来提供关于非线性问题的信息。然而,渐近线性的解释意味着当未知变量,比如u,既大又正,又大又负时,非线性项的行为是相同的。通常,这是不切实际的,事实上,当u为大且正值时,许多问题都有某种类型的(接近)线性行为,而当u为大且负值时,则有另一种类型的线性行为。具有这种行为的线性称为“跳跃”。跳跃非线性在许多应用中自然出现,例如弹性问题,当材料被拉伸和压缩时,所涉及的弹性常数是不同的。例如,金属丝在张力下可能很强,但对压缩没有抵抗力。实际上,跳跃非线性理论已经应用于悬索桥(由于桥面的缆索支撑,跳跃非线性模型是相关的),并导致对著名的塔科马桥倒塌的解释,这与标准不同。尽管乍一看,跳跃非线性似乎只是渐近线性问题的简单概括,但令人惊讶的是,处理起来要复杂得多,而且从70年代后期开始就一直在积极研究。一个概括的通常想法的频谱的线性算子处理跳跃非线性是在1977年左右。这就是所谓的Fucik谱,和一个扩展,这被称为“半本征值”的一套最近已经研究。每一个这些集已被广泛研究,并导致结果,没有对应的线性或渐近linearproblems。特别是对于周期问题,Fucik谱或半特征值集的结构仍然不清楚,尽管最近的结果表明,这种结构比线性情况复杂得多。关于这些集的大多数工作都是处理半线性情况,其中标准线性,二阶线性,二阶线性和三阶线性。(或更高)阶,椭圆微分算子有一个跳跃的非线性添加到它。然而,有拟线性推广的线性微分算子称为p-Laplacian。p-Laplacian在许多应用中出现,例如非牛顿流体流动和渗流问题,目前正受到全世界数学家的密切研究(如在mathscinet上搜索“p-Laplacian”所示)。通常拉普拉斯算子的许多性质都可以扩展到p-Laplacian算子,但并非所有的都可以。特别是,由于p-Laplacian有一个积极的齐次属性,它makesense定义一个频谱,和一些谱性质的线性问题推广到p-Laplacian.It是我们的观点,相互作用的p-Laplacian和跳跃非线性将提供迷人的和丰富的解决方案的行为,并将提供一个基本框架,从中可以得到更好的理解更复杂的应用。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Some recent results on the spectrum of multi-point eigenvalue problems for the p-Laplacian
p-拉普拉斯多点特征值问题谱的一些最新结果
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:Francois Genoud (Author)
- 通讯作者:Francois Genoud (Author)
Eigenvalue criteria for existence of positive solutions of second-order, multi-point, p-Laplacian boundary value problems
二阶、多点、p-拉普拉斯边值问题正解存在的特征值准则
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0.7
- 作者:Bryan Rynne (Author)
- 通讯作者:Bryan Rynne (Author)
A global curve of stable, positive solutions for a p-Laplacian problem
p-拉普拉斯问题的稳定正解的全局曲线
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0.7
- 作者:Bryan Rynne (Author)
- 通讯作者:Bryan Rynne (Author)
Nonlinear Schr"odinger equations on $\mathbb{R}$: global bifurcation
$mathbb{R}$ 上的非线性薛定谔方程:全局分岔
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:Francois Genoud (Author)
- 通讯作者:Francois Genoud (Author)
Bifurcation along curves for the $p$-Laplacian with radial symmetry, Electronic Journal of Differential Equations
具有径向对称性的 $p$-拉普拉斯算子沿曲线的分岔,微分方程电子杂志
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0.7
- 作者:Francois Genoud (Author)
- 通讯作者:Francois Genoud (Author)
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bryan Rynne其他文献
Bryan Rynne的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
铋基邻近双金属位点Type B异质结光热催化合成氨机制研究
- 批准号:
- 批准年份:2024
- 资助金额:30.0 万元
- 项目类别:省市级项目
盐皮质激素受体抑制2型固有淋巴细胞活化加重心肌梗死后心室重构的作用机制
- 批准号:82372202
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
损伤线粒体传递机制介导成纤维细胞/II型肺泡上皮细胞对话在支气管肺发育不良肺泡发育阻滞中的作用
- 批准号:82371721
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
GPSM1介导Ca2+循环-II型肌球蛋白网络调控脂肪产热及代谢稳态的机制研究
- 批准号:82370879
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
二型聚合函数基于扩展原理的构造与表示问题
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
真菌中I型-III型聚酮杂合类天然产物的基因组挖掘
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
智能型Type-I光敏分子构效设计及其抗耐药性感染研究
- 批准号:22207024
- 批准年份:2022
- 资助金额:20 万元
- 项目类别:青年科学基金项目
TypeⅠR-M系统在碳青霉烯耐药肺炎克雷伯菌流行中的作用机制研究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
替加环素耐药基因 tet(A) type 1 变异体在碳青霉烯耐药肺炎克雷伯菌中的流行、进化和传播
- 批准号:LY22H200001
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
面向手性α-氨基酰胺药物的新型不对称Ugi-type 反应开发
- 批准号:LY22B020003
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Research Initiation Award: Turan-type problems on partially ordered sets
研究启动奖:偏序集上的图兰型问题
- 批准号:
2247163 - 财政年份:2023
- 资助金额:
$ 32.57万 - 项目类别:
Standard Grant
Ramsey-type problems from graph-invariants
图不变量的拉姆齐型问题
- 批准号:
23K03204 - 财政年份:2023
- 资助金额:
$ 32.57万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Regulation of alcohol-induced social disturbances by lateral habenula serotonin receptors
外侧缰核血清素受体调节酒精引起的社交障碍
- 批准号:
10664291 - 财政年份:2023
- 资助金额:
$ 32.57万 - 项目类别:
Real World Adoption of an OUD Digital Health Therapeutic
OUD 数字健康疗法在现实世界中的采用
- 批准号:
10741217 - 财政年份:2023
- 资助金额:
$ 32.57万 - 项目类别:
Optimization of Drug-like Properties of CRFBP-CRF2 Negative Allosteric Modulators for Alcohol Use Disorder
CRFBP-CRF2 负变构调节剂治疗酒精使用障碍的类药特性优化
- 批准号:
10804469 - 财政年份:2023
- 资助金额:
$ 32.57万 - 项目类别:
Novel Phenomena in Steklov Type Problems
Steklov 型问题中的新现象
- 批准号:
EP/V051636/1 - 财政年份:2022
- 资助金额:
$ 32.57万 - 项目类别:
Research Grant
Role of Geroscience-Guided Therapeutics in Oral Health Problems of Aging
老年科学引导治疗在老龄化口腔健康问题中的作用
- 批准号:
10517869 - 财政年份:2022
- 资助金额:
$ 32.57万 - 项目类别:
Novel Phenomena in Steklov Type Problems
Steklov 型问题中的新现象
- 批准号:
EP/V051881/1 - 财政年份:2022
- 资助金额:
$ 32.57万 - 项目类别:
Research Grant
Geometric and algebraic methods in Erdos type problems
鄂尔多斯型问题的几何与代数方法
- 批准号:
RGPIN-2018-03880 - 财政年份:2022
- 资助金额:
$ 32.57万 - 项目类别:
Discovery Grants Program - Individual
Combinatorial Search-Type Problems for Mobile Agents
移动代理的组合搜索类型问题
- 批准号:
RGPIN-2022-03811 - 财政年份:2022
- 资助金额:
$ 32.57万 - 项目类别:
Discovery Grants Program - Individual