Quantum Imaging
量子成像
基本信息
- 批准号:EP/H041222/1
- 负责人:
- 金额:$ 12.16万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2010
- 资助国家:英国
- 起止时间:2010 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Imaging is an important technological tool in many disciplines, such as biomedical research, nanotechnology, and basic physics research. However, due to the wave nature of light there are limits in resolution and contrast that can be achieved in classical imaging techniques. On the other hand, quantum entanglement may offer an improvement over these classical limits, leading to the subject of quantum imaging. The best known quantum imaging protocols are two-photon microscopy and spectroscopy, quantum holography, quantum lithography, and quantum illumination. There are two reasons why it is important to understand the precise distinction between classical and quantum imaging. First, it will help identify new methods for improved imaging, potentially leading to new technology. Second, it will reveal a fundamental aspect of physics that has hitherto remained elusive, namely what makes quantum optics more powerful in imaging than classical optics. The obvious answer to this question, i.e., quantum entanglement, has already been proved false to some extent. While entanglement is probably necessary, it is certainly not sufficient. This is reminiscent of quantum computing, where it was shown that entanglement is necessary but not sufficient for obtaining the promised exponential speed-up over classical computing.The first problem we encounter when we try to understand the difference between classical and quantum imaging is the lack of an operational quantitative measure of the imaging quality. We therefore need a quantitative measure for practical imaging protocols that provides a well-defined threshold between the classical and the quantum regime. Secondly, what exactly is the role of entanglement in quantum imaging? Furthermore, is it possible to derive fundamental bounds on quantum imaging with respect to the imaging quality measure? Thirdly, once a fundamental limit on the objective imaging measure has been found, an obvious question is what procedures saturate this bound.
成像是许多学科的重要技术工具,如生物医学研究、纳米技术和基础物理研究。然而,由于光的波动性质,经典成像技术在分辨率和对比度方面存在局限性。另一方面,量子纠缠可能会提供对这些经典极限的改进,从而导致量子成像的主题。最著名的量子成像协议是双光子显微镜和光谱学、量子全息、量子光刻和量子照明。理解经典成像和量子成像之间的准确区别很重要,原因有两个。首先,它将有助于确定改进成像的新方法,有可能导致新技术的出现。其次,它将揭示物理学的一个基本方面,这个方面到目前为止仍然难以捉摸,即是什么使量子光学在成像方面比经典光学更强大。这个问题的明显答案,即量子纠缠,在某种程度上已经被证明是错误的。虽然纠缠可能是必要的,但这肯定是不够的。这让人想起量子计算,在量子计算中,纠缠被证明是必要的,但不是获得承诺的相对于经典计算的指数加速的充分条件。当我们试图理解经典成像和量子成像之间的差异时,我们遇到的第一个问题是缺乏可操作的成像质量的定量测量。因此,我们需要为实用的成像协议提供一个在经典和量子机制之间提供一个明确定义的阈值的定量测量。其次,纠缠在量子成像中的作用到底是什么?此外,是否有可能推导出量子成像相对于成像质量度量的基本界限?第三,一旦找到了客观成像测量的基本极限,一个明显的问题是什么程序饱和了这个界限。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Computing spectral bounds of the Heisenberg ferromagnet from geometric considerations
从几何考虑计算海森堡铁磁体的光谱范围
- DOI:10.1063/1.5084136
- 发表时间:2019
- 期刊:
- 影响因子:1.3
- 作者:Ouyang Y
- 通讯作者:Ouyang Y
A theory of single-shot error correction for adversarial noise
- DOI:10.1088/2058-9565/aafc8f
- 发表时间:2019-04-01
- 期刊:
- 影响因子:6.7
- 作者:Campbell, Earl T.
- 通讯作者:Campbell, Earl T.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pieter Kok其他文献
Entangled photons report for duty
纠缠光子报到
- DOI:
10.1038/nphoton.2010.180 - 发表时间:
2010-08-01 - 期刊:
- 影响因子:32.900
- 作者:
Pieter Kok - 通讯作者:
Pieter Kok
Qubits in the pink
处于粉色状态的量子比特
- DOI:
10.1038/444049a - 发表时间:
2006-11-01 - 期刊:
- 影响因子:48.500
- 作者:
Pieter Kok;Brendon W. Lovett - 通讯作者:
Brendon W. Lovett
Pieter Kok的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pieter Kok', 18)}}的其他基金
Large Baseline Quantum-Enhanced Imaging Networks
大型基线量子增强成像网络
- 批准号:
EP/V021303/1 - 财政年份:2021
- 资助金额:
$ 12.16万 - 项目类别:
Research Grant
Quantum Code Design And Architecture
量子代码设计与架构
- 批准号:
EP/R043825/1 - 财政年份:2018
- 资助金额:
$ 12.16万 - 项目类别:
Research Grant
相似国自然基金
非小细胞肺癌Biomarker的Imaging MS研究新方法
- 批准号:30672394
- 批准年份:2006
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
Using soft X-ray coherent diffraction imaging to study and tailor the formation of superfluid helium droplets and quantum vortices within them
使用软 X 射线相干衍射成像来研究和定制超流氦液滴及其内部量子涡旋的形成
- 批准号:
23K28359 - 财政年份:2024
- 资助金额:
$ 12.16万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
STTR Phase I: High-Sensitivity Flexible Quantum Dots/Graphene X-Ray Detectors and Imaging Systems
STTR 第一阶段:高灵敏度柔性量子点/石墨烯 X 射线探测器和成像系统
- 批准号:
2322053 - 财政年份:2024
- 资助金额:
$ 12.16万 - 项目类别:
Standard Grant
Quantum-limited super-resolution imaging
量子限制超分辨率成像
- 批准号:
EP/Y029127/1 - 财政年份:2024
- 资助金额:
$ 12.16万 - 项目类别:
Fellowship
Quantum-Enabled Brain Imaging: A Pathway to Clinical Utility
量子脑成像:临床应用的途径
- 批准号:
10107115 - 财政年份:2024
- 资助金额:
$ 12.16万 - 项目类别:
Small Business Research Initiative
Quantum microscopy facility for ultrasensitive nanoscale magnetic imaging
用于超灵敏纳米级磁成像的量子显微镜设备
- 批准号:
LE240100092 - 财政年份:2024
- 资助金额:
$ 12.16万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
RII Track-4:NSF: In-vitro Cytotoxicity Assessment of Synthesized Quantum Dots for Enhanced Cell Imaging
RII Track-4:NSF:用于增强细胞成像的合成量子点的体外细胞毒性评估
- 批准号:
2327429 - 财政年份:2024
- 资助金额:
$ 12.16万 - 项目类别:
Standard Grant
A quantum telescope for extremely high-resolution imaging
用于极高分辨率成像的量子望远镜
- 批准号:
DE240100587 - 财政年份:2024
- 资助金额:
$ 12.16万 - 项目类别:
Discovery Early Career Researcher Award
QuSeC-TAQS: Nanodiamond Quantum Sensing for Four-Dimensional Live-Cell Imaging
QuSeC-TAQS:用于四维活细胞成像的纳米金刚石量子传感
- 批准号:
2326628 - 财政年份:2023
- 资助金额:
$ 12.16万 - 项目类别:
Continuing Grant
Creation of low-noise quantum 3D imaging technique based on transport of intensity equation
基于强度传输方程的低噪声量子3D成像技术的创建
- 批准号:
23K17749 - 财政年份:2023
- 资助金额:
$ 12.16万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)