Workshop on C*-Algebras and their Classification
C*-代数及其分类研讨会
基本信息
- 批准号:EP/I00792X/1
- 负责人:
- 金额:$ 1.46万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2010
- 资助国家:英国
- 起止时间:2010 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The structure theory of nuclear C*-algebras has seen dramatic advances in recent years. Most notably, tight links have been discovered between topological and algebraic regularity properties of C*-algebras. These results have spurred new and very broad classification theorems, with particularly satisfying applications to transformation group C*-algebras. They have also opened connections to other areas such as graph algebras or coarse geometry; these connections are waiting to be further explored.The area is extremely vivid, as reflected by the large number of well-synced recent and upcoming events (in Oberwolfach, Banff, Toronto, Copenhagen, Mnster, Barcelona, Palo Alto, to name but a few). It is particularly attractive for early career researchers, as the theory is well-developed yet highly active, with many open questions which are interesting yet accessible (even at postgraduate level). So far the UK has been somewhat underrepresented in this development. The LMS will devote their 2010 Midlands regional meeting to C*-algebras; this will be followed by a four day workshop. The LMS meeting aims to spur some important new developments in C*-algebras to a wider mathematical public; we will explore these results and potential further developments in more detail during the workshop. We plan to emphasize the structure theory and classification of nuclear C*-algebras during these events, with particular attention paid to applications such as dynamical systems or graph algebras.
近年来,核C~*-代数的结构理论取得了很大的进展。最值得注意的是,C*-代数的拓扑正则性和代数正则性之间存在着紧密的联系。这些结果得到了新的和非常广泛的分类定理,特别令人满意地应用于变换群C*-代数。他们还开辟了与其他领域的联系,如图代数或粗略几何;这些联系有待进一步探索。这一领域非常生动,从大量同步良好的近期和即将举行的活动(在奥伯沃尔法赫、班夫、多伦多、哥本哈根、门斯特、巴塞罗那、帕洛阿尔托等地仅举几例)中可见一斑。它对早期职业研究人员特别有吸引力,因为该理论发展良好,但非常活跃,有许多开放的问题,这些问题既有趣又容易理解(即使是在研究生水平上)。到目前为止,英国在这一发展中的代表性有所不足。LMS将在2010年的米德兰兹地区会议上专门讨论C*-代数;随后将举行为期四天的研讨会。LMS会议旨在推动C*-代数的一些重要的新发展向更广泛的数学公众;我们将在研讨会期间更详细地探讨这些结果和潜在的进一步发展。我们计划在这些事件中强调核C*-代数的结构理论和分类,并特别关注诸如动力系统或图代数之类的应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joachim Zacharias其他文献
A note on spectral triples and quasidiagonality
- DOI:
10.1016/j.exmath.2008.10.007 - 发表时间:
2009-01-01 - 期刊:
- 影响因子:
- 作者:
Adam Skalski;Joachim Zacharias - 通讯作者:
Joachim Zacharias
Joachim Zacharias的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joachim Zacharias', 18)}}的其他基金
The Cuntz Semigroup and the Fine Structure of Nuclear C*-Algebras
Cuntz 半群和核 C* 代数的精细结构
- 批准号:
EP/I019227/2 - 财政年份:2012
- 资助金额:
$ 1.46万 - 项目类别:
Research Grant
Dilations of Higher Rank Operator Tuples
高阶运算符元组的膨胀
- 批准号:
EP/D058643/1 - 财政年份:2006
- 资助金额:
$ 1.46万 - 项目类别:
Research Grant
相似海外基金
Similarities in representation theory of quantum loop algebras of several types and their developments
几种量子环代数表示论的相似性及其发展
- 批准号:
23K12950 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
[infinite]-Lie Groups and Their [infinite]-Lie Algebras in Real Cohesive Homotopy Type Theory
实内聚同伦型理论中的[无穷]-李群及其[无穷]-李代数
- 批准号:
2888102 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Studentship
Period map for primitive forms and their associated root systems and Lie algebras
本原形式的周期图及其相关的根系和李代数
- 批准号:
23H01068 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Topological Hopf Algebras and Their cyclic cohomology
拓扑 Hopf 代数及其循环上同调
- 批准号:
RGPIN-2018-04039 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Banach algebras, operator spaces and their applications to locally compact quantum groups
Banach代数、算子空间及其在局部紧量子群中的应用
- 批准号:
RGPIN-2019-04579 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Faithful flatness of Hopf algebras over their Hopf subalgebras
Hopf 代数在其 Hopf 子代数上的忠实平坦性
- 批准号:
2876141 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Studentship
Infinite-dimensional Lie algebras and their applications
无限维李代数及其应用
- 批准号:
RGPIN-2019-06170 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Noncommutative Algebras and Their Interactions With Algebraic and Arithmetic Geometry
非交换代数及其与代数和算术几何的相互作用
- 批准号:
2101761 - 财政年份:2021
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
Banach algebras, operator spaces and their applications to locally compact quantum groups
Banach代数、算子空间及其在局部紧量子群中的应用
- 批准号:
RGPIN-2019-04579 - 财政年份:2021
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual