System Identification and Data Modelling of Complex Nonlinear and Nonstationary Processes

复杂非线性和非平稳过程的系统辨识和数据建模

基本信息

  • 批准号:
    EP/I011056/1
  • 负责人:
  • 金额:
    $ 12.87万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2011
  • 资助国家:
    英国
  • 起止时间:
    2011 至 无数据
  • 项目状态:
    已结题

项目摘要

Many real-world systems in engineering and science are inherently nonlinear and nonstationary in nature. However, the analysis and modelling techniques commonly used to study many types of typically complex nonlinear and nonstationary processes often assume linearity and stationarity. Conventional signal processing techniques include non-parametric approaches (e.g. statistics and power spectral estimation) and linear parametric modelling approaches (e.g. linear time-invariant and simply time-varying models). It has been noticed that complex signals may contain hidden information which cannot be sufficiently revealed and characterised by using traditional analysis methods. This project is primarily aimed to investigate, adapt and develop system identification and data modelling methods and algorithms for the analysis of nonlinear and nonstationary complex dynamical processes in the time, frequency, time-frequency and spatio-temporal domains.
在工程和科学中,许多现实世界的系统本质上是非线性和非平稳的。然而,通常用于研究许多类型的典型复杂的非线性和非平稳过程的分析和建模技术往往假设线性和平稳性。传统的信号处理技术包括非参数方法(例如统计和功率谱估计)和线性参数建模方法(例如线性时不变和简单时变模型)。人们已经注意到,复杂的信号可能包含隐藏的信息,不能充分揭示和使用传统的分析方法的特点。该项目的主要目的是研究、调整和开发系统识别和数据建模方法和算法,用于分析时间、频率、时频和时空域中的非线性和非平稳复杂动态过程。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A century of variation in the dependence of Greenland iceberg calving on ice sheet surface mass balance and regional climate change.
Handling missing data in multivariate time series using a vector autoregressive model based imputation (VAR-IM) algorithm: Part I: VAR-IM algorithm versus traditional methods
使用基于向量自回归模型的插补 (VAR-IM) 算法处理多元时间序列中的缺失数据:第 I 部分:VAR-IM 算法与传统方法
  • DOI:
    10.1109/med.2016.7535976
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bashir F
  • 通讯作者:
    Bashir F
Nonlinear model structure detection and parameter estimation using a novel bagging method based on distance correlation metric
  • DOI:
    10.1007/s11071-015-2149-3
  • 发表时间:
    2015-05
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    J. R. Ayala Solares;Hua-Liang Wei
  • 通讯作者:
    J. R. Ayala Solares;Hua-Liang Wei
Parametric and non-parametric methods to enhance prediction performance in the presence of missing data
Using Nonlinear Models to Enhance Prediction Performance with Incomplete Data
  • DOI:
    10.5220/0005157201410148
  • 发表时间:
    2015-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Faraj A. A. Bashir-Faraj-A.-A.-Bashir-3106601;Hua-Liang Wei
  • 通讯作者:
    Faraj A. A. Bashir-Faraj-A.-A.-Bashir-3106601;Hua-Liang Wei
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hua-Liang Wei其他文献

Global Identification of Electrical and Mechanical Parameters in PMSM Drive based on Dynamic Self-Learning PSO
  • DOI:
    DOI:10.1109/TPEL.2018.2801331
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
  • 作者:
    Zhao-Hua Liu;Hua-Liang Wei;Xiao-Hua Li;Kan Liu;Qing-Chang Zhong
  • 通讯作者:
    Qing-Chang Zhong
Boosting Wavelet Neural Networks Using Evolutionary Algorithms for Short-Term Wind Speed Time Series Forecasting
  • DOI:
    10.1007/978-3-030-20521-8_2
  • 发表时间:
    2019-06
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Hua-Liang Wei
  • 通讯作者:
    Hua-Liang Wei
Optimal Transport-Based Deep Domain Adaptation Approach for Fault Diagnosis of Rotating Machine
Time-Varying System Identification Using an Ultra-Orthogonal Forward Regression and Multiwavelet Basis Functions With Applications to EEG
使用超正交前向回归和多小波基函数进行时变系统识别及其在 EEG 中的应用
Sparse, Interpretable and Transparent Predictive Model Identification for Healthcare Data Analysis
  • DOI:
    10.1007/978-3-030-20521-8_9
  • 发表时间:
    2019-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hua-Liang Wei
  • 通讯作者:
    Hua-Liang Wei

Hua-Liang Wei的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

相似海外基金

Fast Bayesian System Identification of an Aeroelastic System with Structural and Aerodynamic Nonlinearities Using High Performance Computing and Wind-Tunnel Data
使用高性能计算和风洞数据对具有结构和气动非线性的气动弹性系统进行快速贝叶斯系统辨识
  • 批准号:
    518234-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 12.87万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
CPS: Medium: Data-driven Causality Mapping, System Identification and Dynamics Characterization for Future Power Grid
CPS:中:未来电网的数据驱动因果关系图、系统识别和动态表征
  • 批准号:
    1932458
  • 财政年份:
    2019
  • 资助金额:
    $ 12.87万
  • 项目类别:
    Standard Grant
Fast Bayesian System Identification of an Aeroelastic System with Structural and Aerodynamic Nonlinearities Using High Performance Computing and Wind-Tunnel Data
使用高性能计算和风洞数据对具有结构和气动非线性的气动弹性系统进行快速贝叶斯系统辨识
  • 批准号:
    518234-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 12.87万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Fast Bayesian System Identification of an Aeroelastic System with Structural and Aerodynamic Nonlinearities Using High Performance Computing and Wind-Tunnel Data
使用高性能计算和风洞数据对具有结构和气动非线性的气动弹性系统进行快速贝叶斯系统辨识
  • 批准号:
    518234-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 12.87万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
CAREER: Causation in Dynamical Systems: Bridging the Gap Between Data Analytics and System Identification
职业:动态系统中的因果关系:弥合数据分析和系统识别之间的差距
  • 批准号:
    1552218
  • 财政年份:
    2016
  • 资助金额:
    $ 12.87万
  • 项目类别:
    Standard Grant
Flora and fauna identification system based on multi-modal data observed
基于多模态观测数据的动植物识别系统
  • 批准号:
    15K12027
  • 财政年份:
    2015
  • 资助金额:
    $ 12.87万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Satellite orbit determination using Automatic Identification System (AIS) data
使用自动识别系统(AIS)数据确定卫星轨道
  • 批准号:
    491920-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 12.87万
  • 项目类别:
    Engage Grants Program
Funding Opportunity: Science-Policy Fellowship on the Development and identification of antimicrobial use (AMU) data requirements for the animal agriculture sector in order to build a robust monitoring and tracking system for AMU. Proposed Organization:
资助机会:科学政策奖学金,旨在开发和确定畜牧业抗菌药物使用 (AMU) 数据要求,以便为 AMU 建立强大的监测和跟踪系统。
  • 批准号:
    320214
  • 财政年份:
    2014
  • 资助金额:
    $ 12.87万
  • 项目类别:
Distribution-free system identification: building models from experimental data under minimal statistical assumptions
无分布系统识别:在最小统计假设下根据实验数据构建模型
  • 批准号:
    DE120102601
  • 财政年份:
    2012
  • 资助金额:
    $ 12.87万
  • 项目类别:
    Discovery Early Career Researcher Award
Structural system identification with the consideration of model validity by taking advantage of data from fiber-optic sensors
利用光纤传感器的数据,考虑模型有效性的结构系统识别
  • 批准号:
    22860016
  • 财政年份:
    2010
  • 资助金额:
    $ 12.87万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了