Non-Equilibrium Fluid Dynamics for Micro/Nano Engineering Systems

微/纳米工程系统的非平衡流体动力学

基本信息

  • 批准号:
    EP/I011927/1
  • 负责人:
  • 金额:
    $ 311.37万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2011
  • 资助国家:
    英国
  • 起止时间:
    2011 至 无数据
  • 项目状态:
    已结题

项目摘要

This research is about simulating and designing the engineering flow systems that will form a major part of the responses to health, transportation, energy and climate challenges that the world faces over the next 40 years.The United Nations estimates that by 2050 four billion people in 48 countries will lack sufficient water. But 97 percent of the water on the planet is saltwater, and much of the remaining freshwater is frozen in glaciers or the polar ice caps. If the glaciers in the polar regions continue to melt, as expected, the supply of freshwater may actually decrease: freshwater from the melting glaciers will mingle with saltwater in the oceans and become too salty to drink, and rising sea levels will contaminate freshwater sources along coastal regions. Technologies for large-scale purification of seawater or other contaminated water to make it drinkable are therefore urgently needed.At the same time, figures from the US Energy Information Administration project an average growth rate of 2.7 percent per year for transportation energy use in non-OECD countries to 2030 - this is 8 times higher than the projected rate for OECD countries. China's passenger transportation energy use per capita alone is projected to triple over this period, and India's to double. Improving the fuel efficiency of air and marine transport is a strategic priority for governments and companies around the world, and will have the added benefit of reducing emissions and helping address climate change. Micro and nano scale engineering presents an important opportunity to help meet these pressing challenges. For example, early indications are that membranes of carbon nanotubes have remarkable properties in filtering salt ions and other contaminants from water. Also, controlling the turbulent drag on aircraft and ship hulls, which is a major inefficiency in modern transportation, may be achievable by embedding micro systems and/or nano structures over the vehicle's surface.This cross-disciplinary research programme targets the unconventional fluid dynamics that is key to innovating in these visionary applications. The work is strongly supported by 9 external partners, ranging from large multinational companies to SMEs and public advisory bodies, and brings together established research groups from two major UK universities and a national research institute. We will deliver a comprehensive new technique for simulating mixed equilibrium/non-equilibrium fluid dynamics at the nano and micro scale, and deploy it on three important technical challenges that span the range of economic and societal impact, from energy to healthcare. These are drag reduction in aerospace, applications of super-hydrophobic surfaces to marine transport, and water desalination / purification. In this research we aim to:- accurately predict the performance of the proposed technologies;- optimise their design within realistic engineering parameters;- propose new designs which exploit flow behaviour at this scale for technological impact.The research partnership leading this Programme has flourished over 10 years into an international driver for understanding these kinds of thermodynamically non-equilibrium flows, attracting substantial joint funding and producing co-authored research publications. The partnership is poised to effect the step-change in non-equilibrium flow simulation capabilities that is needed to make new technologies at the micro and nano scale practicable, beyond any currently conceived.
这项研究是关于模拟和设计工程流系统,这将成为应对未来40年世界面临的健康,交通,能源和气候挑战的主要部分。联合国估计,到2050年,48个国家的40亿人将缺乏足够的水。但地球上97%的水是咸水,剩下的淡水大部分都冻结在冰川或极地冰盖中。如果极地地区的冰川如预期的那样继续融化,淡水的供应实际上可能减少:冰川融化产生的淡水将与海洋中的盐水混合,变得太咸而不能饮用,海平面上升将污染沿着地区的淡水资源。与此同时,美国能源情报署的数据显示,到2030年,非经合组织国家的交通能源使用量将以每年2.7%的平均速度增长,这是经合组织国家预计增长率的8倍。在此期间,仅中国的人均客运能源使用量预计将增加两倍,印度将增加一倍。提高空运和海运的燃油效率是世界各国政府和公司的战略重点,并将带来减少排放和帮助应对气候变化的额外好处。微米和纳米尺度工程为帮助应对这些紧迫挑战提供了重要机会。例如,早期的迹象表明,碳纳米管膜在过滤水中的盐离子和其他污染物方面具有显着的性能。此外,控制飞机和船体上的湍流阻力,这是现代运输中的一个主要低效问题,可以通过在车辆表面嵌入微系统和/或纳米结构来实现。这个跨学科的研究计划针对非常规流体动力学,这是这些有远见的应用创新的关键。这项工作得到了9个外部合作伙伴的大力支持,从大型跨国公司到中小企业和公共咨询机构,并汇集了来自英国两所主要大学和一个国家研究机构的成熟研究小组。我们将提供一种全面的新技术,用于在纳米和微米尺度上模拟混合平衡/非平衡流体动力学,并将其部署在三个重要的技术挑战上,这些挑战涵盖了从能源到医疗保健的经济和社会影响范围。这些是航空航天中的减阻,超疏水表面在海上运输中的应用,以及水的脱盐/净化。在这项研究中,我们的目标是:-准确地预测所提出的技术的性能;-在现实的工程参数范围内优化其设计;- 提出新的设计,利用这种规模的流动行为产生技术影响。领导这一计划的研究伙伴关系在过去10年里蓬勃发展,成为理解这类非平衡流动的国际推动力,吸引了大量的联合资金,并共同撰写研究出版物。该合作伙伴关系准备影响非平衡流模拟能力的逐步变化,这是使新技术在微米和纳米尺度上切实可行所必需的,超出了目前的任何设想。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Laplacian-based algorithm for non-isothermal atomistic-continuum hybrid simulation of micro and nano-flows
A Particle-Continuum Hybrid Framework for Transport Phenomena and Chemical Reactions in Multicomponent Systems at the Micro and Nanoscale
The atomistic-continuum hybrid taxonomy and the hybrid-hybrid approach THE HYBRID-HYBRID APPROACH
原子-连续统混合分类法和混合-混合方法 混合-混合方法
A hybrid molecular-continuum simulation method for incompressible flows in micro/nanofluidic networks
  • DOI:
    10.1007/s10404-013-1168-y
  • 发表时间:
    2013-03
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    M. Borg;D. Lockerby;J. Reese
  • 通讯作者:
    M. Borg;D. Lockerby;J. Reese
Knudsen heat capacity
  • DOI:
    10.1063/1.4872335
  • 发表时间:
    2014-05
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    G. Babac;J. Reese
  • 通讯作者:
    G. Babac;J. Reese
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jason Reese其他文献

PL-231: A comprehensive strategy to manage weight regain after gastric bypass (GBP)
  • DOI:
    10.1016/j.soard.2010.03.061
  • 发表时间:
    2010-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Carlos A. Barba;Nissin Nahmas;Melissa Sullivan;Jason Reese;Jannette Lopez
  • 通讯作者:
    Jannette Lopez
Sport sales managers’ perceptions of learning through experiential sales projects
  • DOI:
    10.1016/j.jhlste.2024.100509
  • 发表时间:
    2024-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Derek R. Walton;Jason Reese
  • 通讯作者:
    Jason Reese
Noncovalent polymerization and assembly in water promoted by thermodynamic incompatibility.
热力学不相容性促进了水中的非共价聚合和组装。
  • DOI:
    10.1021/jp103143x
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Karen A. Simon;Preeti Sejwal;Eric R. Falcone;E. Burton;Si;Deepali Prashar;Debjyoti Bandyopadhyay;S. Narasimhan;Nisha Varghese;Nemal S. Gobalasingham;Jason Reese;Yan‐Yeung Luk
  • 通讯作者:
    Yan‐Yeung Luk

Jason Reese的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jason Reese', 18)}}的其他基金

The First Open-Source Software for Non-Continuum Flows in Engineering
第一个用于工程非连续流的开源软件
  • 批准号:
    EP/K038621/1
  • 财政年份:
    2013
  • 资助金额:
    $ 311.37万
  • 项目类别:
    Research Grant
Fluid Flows at the Nano Scale: from Molecular Dynamics to Hydrodynamics
纳米尺度的流体流动:从分子动力学到流体动力学
  • 批准号:
    EP/F002467/1
  • 财政年份:
    2007
  • 资助金额:
    $ 311.37万
  • 项目类别:
    Research Grant
Extended Continuum Models for Transient and Rarefied Hypersonic Aerothermodynamics
瞬态和稀薄高超声速空气热力学的扩展连续体模型
  • 批准号:
    EP/F014155/1
  • 财政年份:
    2007
  • 资助金额:
    $ 311.37万
  • 项目类别:
    Research Grant
BEYOND NAVIER-STOKES: MEETING THE CHALLENGE OF NON-EQUILIBRIUM GAS DYNAMICS
超越纳维-斯托克斯:应对非平衡气体动力学的挑战
  • 批准号:
    EP/D007488/1
  • 财政年份:
    2006
  • 资助金额:
    $ 311.37万
  • 项目类别:
    Research Grant

相似海外基金

Elucidation of non-equilibrium phase change at gas-liquid interface mechanism for mixture gas and its application to molecular multi-phase fluid dynamics
混合气体气液界面非平衡相变机理的阐明及其在分子多相流体动力学中的应用
  • 批准号:
    20K04277
  • 财政年份:
    2020
  • 资助金额:
    $ 311.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
GOALI: Collaborative Research: Non-invasive measurement of kinematics and rheology in a non-equilibrium drying complex fluid
目标:合作研究:非平衡干燥复杂流体中运动学和流变学的非侵入性测量
  • 批准号:
    1931681
  • 财政年份:
    2020
  • 资助金额:
    $ 311.37万
  • 项目类别:
    Standard Grant
Pattern formation in non-equilibrium fluid, solid and multiphase systems
非平衡流体、固体和多相系统中的模式形成
  • 批准号:
    RGPIN-2014-04359
  • 财政年份:
    2019
  • 资助金额:
    $ 311.37万
  • 项目类别:
    Discovery Grants Program - Individual
Pattern formation in non-equilibrium fluid, solid and multiphase systems
非平衡流体、固体和多相系统中的模式形成
  • 批准号:
    RGPIN-2014-04359
  • 财政年份:
    2017
  • 资助金额:
    $ 311.37万
  • 项目类别:
    Discovery Grants Program - Individual
Pattern formation in non-equilibrium fluid, solid and multiphase systems
非平衡流体、固体和多相系统中的模式形成
  • 批准号:
    RGPIN-2014-04359
  • 财政年份:
    2016
  • 资助金额:
    $ 311.37万
  • 项目类别:
    Discovery Grants Program - Individual
Pattern formation in non-equilibrium fluid, solid and multiphase systems
非平衡流体、固体和多相系统中的模式形成
  • 批准号:
    RGPIN-2014-04359
  • 财政年份:
    2015
  • 资助金额:
    $ 311.37万
  • 项目类别:
    Discovery Grants Program - Individual
Pattern formation in non-equilibrium fluid, solid and multiphase systems
非平衡流体、固体和多相系统中的模式形成
  • 批准号:
    RGPIN-2014-04359
  • 财政年份:
    2014
  • 资助金额:
    $ 311.37万
  • 项目类别:
    Discovery Grants Program - Individual
Non-equilibrium flow at gradient surfaces: Fluid kinetics of droplets and particle motion
梯度表面的非平衡流动:液滴和粒子运动的流体动力学
  • 批准号:
    5425061
  • 财政年份:
    2004
  • 资助金额:
    $ 311.37万
  • 项目类别:
    Priority Programmes
Non-equilibrium fluid and surface systems
非平衡流体和表面系统
  • 批准号:
    3596-1992
  • 财政年份:
    1994
  • 资助金额:
    $ 311.37万
  • 项目类别:
    Discovery Grants Program - Individual
Non-equilibrium fluid and surface systems
非平衡流体和表面系统
  • 批准号:
    3596-1992
  • 财政年份:
    1993
  • 资助金额:
    $ 311.37万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了