Resilient Electricity Networks for Great Britain (RESNET)
英国弹性电力网络 (RESNET)
基本信息
- 批准号:EP/I035757/1
- 负责人:
- 金额:$ 124.6万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2011
- 资助国家:英国
- 起止时间:2011 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The resilience of GB's electricity energy network is being challenged on three fronts: (i) policies aimed at reducing greenhouse gas emissions through decarbonising energy supply will alter substantially the existing supply mix; (ii) decarbonising of the 'energy' system will likely involve considerable shift of previously non-electric energy demand onto the electricity network with accompanying changes in how much electricity is needed and when it is needed; and (iii) the expected mean changes in climate will alter the electricity demand and performance of electricity infrastructure, and increased severity and frequency of extreme weather events will impact on the electrical network and distribution systems.To address these multiple challenges, the RESNET project (Resilient Electricity Networks for Great Britain) will develop and demonstrate a comprehensive systems-level approach to analysing the resilience of the existing and proposed electricity networks. It will develop, test and refine tools for evaluating adaptation measures designed to enhance the resilience of the network including societal and technical adaptation. The work will consist of 5 work packages (WPs).WP1 will produce future climate scenarios for three key weather variables where changes in average characteristics can impact on the operational resilience of the network and changes in extremes can impact the infrastructural resilience of the network: temperature (and solar radiation), rainfall (with associated flooding) and wind. WP2 will develop electricity demand and supply scenarios, consistent both with the climate change impacts scenarios from WP1, and levels of decarbonisation required to meet policy targets. WP3 will couple the hazard model from WP1 with demand and supply scenarios from WP2 with a dynamic, spatially explicit, power systems simulation model. WP4 will use the model to quantify the potential impacts of future climate upon the day to day (operational) resilience and resilience to extreme events (infrastructure network resilience) of the overall GB electricity transmission system (i.e. the National Grid), and case study distribution networks. Against these infrastructure, demand and climate futures we will test the effectiveness of a wide range of adaptation options for improving the overall resilience of the energy system. Adaptation is not seen here as a purely technical activity but should consider societal adaptation where by consumers change their practices to cope with changing levels of network reliability. WP5 will assess the impact of the future vulnerability of the network upon organisations and households, taking into account climate change impacts, and consider how these may adapt.Contemporary UK society has grown accustomed to a reliable supply of electricity with any interruption to supply typically considered, socially, politically and economically undesirable, almost regardless of the technical and economic implications of maintaining such high levels of integrity. This expected level of service places further constraints on an electricity network already facing multiple challenges. Ultimately, if the UK's energy system is to achieve the urgent and rapid mitigation implied by the Government's 2 deg C commitment, the electricity system will have to undergo profound changes over the short, medium and long term. Pivotal to a successful and rapidly decarbonising electricity system is a transmission and distribution network that is resilient to climate change impacts, capable of balancing different types of low carbon supply in the context of a changing demand profile. Early and integrated analysis of these systemic challenges will pay significant dividends in developing an affordable, robust and low carbon electricity system resilient to the direct and indirect impacts of changing environmental and socio-economic drivers.
GB的电力能源网络的弹性正受到三方面的挑战:(i)旨在通过脱碳能源供应减少温室气体排放的政策将大大改变现有的供应组合;(ii)“能源”系统的脱碳可能会涉及相当大的转变,对电力网络的电能需求,伴随着需要多少电力和何时需要电力的变化;及(iii)预期的平均气候变化将改变电力需求及电力基础设施的表现,而极端天气事件的严重程度及频率增加将影响电网及配电系统。为应对上述多重挑战,RESNET项目(英国弹性电力网络)将开发和展示一种全面的系统级方法,以分析现有和拟议的电力网络的弹性。它将开发、测试和完善用于评估适应措施的工具,这些措施旨在增强网络的复原力,包括社会和技术适应。WP 1将为三个关键天气变量产生未来气候情景,其中平均特征的变化可能影响网络的运营弹性,极端变化可能影响网络的基础设施弹性:温度(和太阳辐射),降雨(与洪水相关)和风。WP 2将制定电力需求和供应情景,与WP 1的气候变化影响情景以及实现政策目标所需的脱碳水平保持一致。WP 3将WP 1的危险模型与WP 2的需求和供应情景相结合,并具有动态的、空间上明确的电力系统仿真模型。WP 4将使用该模型量化未来气候对整个GB电力传输系统(即国家电网)的日常(运营)弹性和对极端事件的弹性(基础设施网络弹性)的潜在影响,以及案例研究配电网络。根据这些基础设施,需求和气候未来,我们将测试各种适应选项的有效性,以提高能源系统的整体弹性。适应在这里不被视为一个纯粹的技术活动,但应考虑社会适应,消费者改变他们的做法,以科普不断变化的网络可靠性水平。WP 5将评估未来电网脆弱性对组织和家庭的影响,考虑到气候变化的影响,并考虑如何适应这些影响。当代英国社会已经习惯了可靠的电力供应,任何中断供应通常被认为是社会,政治和经济上不受欢迎的,几乎不考虑保持如此高水平的完整性所涉及的技术和经济问题。这种预期的服务水平对已经面临多重挑战的电力网络造成了进一步的限制。最终,如果英国的能源系统要实现政府2摄氏度承诺所暗示的紧急和快速缓解,电力系统将不得不在短期,中期和长期内进行深刻的变革。成功且快速脱碳的电力系统的关键是能够抵御气候变化影响的输电和配电网络,能够在不断变化的需求情况下平衡不同类型的低碳供应。对这些系统性挑战的早期综合分析将在开发一个负担得起的,强大的和低碳的电力系统方面带来巨大的好处,该系统能够抵御不断变化的环境和社会经济驱动因素的直接和间接影响。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fear and loathing in UK's energy futures: expectations, rights and responsibilities in potential demand side management strategies
英国能源期货的恐惧和厌恶:潜在需求侧管理策略的期望、权利和责任
- DOI:
- 发表时间:2015
- 期刊:
- 影响因子:0
- 作者:Abi Ghanem D
- 通讯作者:Abi Ghanem D
Hazard tolerance of spatially distributed complex networks
- DOI:10.1016/j.ress.2016.08.010
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:S. Dunn;S. Wilkinson
- 通讯作者:S. Dunn;S. Wilkinson
Analytical Fragility Functions for National Grid Transmission Towers: MPhil -Thesis
国家电网输电塔的脆弱性分析函数:哲学硕士论文
- DOI:
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Cassandra Pickering
- 通讯作者:Cassandra Pickering
Interdependent networks: vulnerability analysis and strategies to limit cascading failure
- DOI:10.1140/epjb/e2014-40876-y
- 发表时间:2014-07-01
- 期刊:
- 影响因子:1.6
- 作者:Fu, Gaihua;Dawson, Richard;Bullock, Seth
- 通讯作者:Bullock, Seth
Network theory for infrastructure systems modelling
基础设施系统建模的网络理论
- DOI:10.1680/ensu.12.00039
- 发表时间:2013
- 期刊:
- 影响因子:0
- 作者:Dunn S
- 通讯作者:Dunn S
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kevin Anderson其他文献
Handmade Original Contents and School Activities in Collaboration with Schoolteachers
与学校老师合作的手工原创内容和学校活动
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Kevin Anderson;Cindy Anderson;Kendra Grant;Susie Gronseth;and Shigeru Ikuta;成田奈緒子;Shigeru Ikuta;成田奈緒子;生田 茂;S. Ikuta - 通讯作者:
S. Ikuta
Bacterial Suspensions for the Growth of <em>Naegleria</em> Species
- DOI:
10.3109/00313027409077159 - 发表时间:
1974-01-01 - 期刊:
- 影响因子:
- 作者:
Kevin Anderson;Adele Jamieson - 通讯作者:
Adele Jamieson
P685. Intracranial Volume Correction Differentially Biases Behavioral Predictions across Neuroanatomical Features and Populations
- DOI:
10.1016/j.biopsych.2022.02.922 - 发表时间:
2022-05-01 - 期刊:
- 影响因子:
- 作者:
Elvisha Dhamala;Leon Q.R. Ooi;Jianzhong Chen;Ruby Kong;Kevin Anderson;B.T. Thomas Yeo;Avram Holmes - 通讯作者:
Avram Holmes
Using Large-Scale Datasets to Identify Sex and Age Specific Brain Behavior Relationships
- DOI:
10.1016/j.biopsych.2022.02.120 - 发表时间:
2022-05-01 - 期刊:
- 影响因子:
- 作者:
Elvisha Dhamala;Leon Q.R. Ooi;Jianzhong Chen;Ruby Kong;Kevin Anderson;B.T. Thomas Yeo;Avram Holmes - 通讯作者:
Avram Holmes
Linking Emotion Perception Ability to the Neural and Computational Processes Underlying Adaptive Social Functioning
- DOI:
10.1016/j.biopsych.2020.02.501 - 发表时间:
2020-05-01 - 期刊:
- 影响因子:
- 作者:
Erica Ho;Jenna Reinen;Lauren Patrick;Kevin Anderson;Hyojung Seo;Ifat Levy;Avram Holmes - 通讯作者:
Avram Holmes
Kevin Anderson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Optimal restoration of electricity distribution networks under rolling time windows and prediction of restoration time
滚动时间窗下配电网优化恢复及恢复时间预测
- 批准号:
2139837 - 财政年份:2022
- 资助金额:
$ 124.6万 - 项目类别:
Standard Grant
Feasibility Regions of Electricity Distribution Networks with Deep Penetration of DERs
分布式能源深度渗透的配电网可行性区域
- 批准号:
573769-2022 - 财政年份:2022
- 资助金额:
$ 124.6万 - 项目类别:
University Undergraduate Student Research Awards
Machine Learning Approach to Identify Environmentally Friendly Alternatives to SF6 for Electricity Networks
用于识别电力网络 SF6 环保替代品的机器学习方法
- 批准号:
2856914 - 财政年份:2022
- 资助金额:
$ 124.6万 - 项目类别:
Studentship
Control of renewable electricity networks
可再生电力网络的控制
- 批准号:
2596897 - 财政年份:2021
- 资助金额:
$ 124.6万 - 项目类别:
Studentship
Integrated Dispatchable Resources Control Systems for Peak Load Management in Local Electricity Distribution Networks
用于本地配电网络峰值负载管理的集成可调度资源控制系统
- 批准号:
537347-2018 - 财政年份:2021
- 资助金额:
$ 124.6万 - 项目类别:
Collaborative Research and Development Grants
Integrated Dispatchable Resources Control Systems for Peak Load Management in Local Electricity Distribution Networks
用于本地配电网络峰值负载管理的集成可调度资源控制系统
- 批准号:
537347-2018 - 财政年份:2020
- 资助金额:
$ 124.6万 - 项目类别:
Collaborative Research and Development Grants
Integrated Dispatchable Resources Control Systems for Peak Load Management in Local Electricity Distribution Networks
用于本地配电网络峰值负载管理的集成可调度资源控制系统
- 批准号:
537347-2018 - 财政年份:2019
- 资助金额:
$ 124.6万 - 项目类别:
Collaborative Research and Development Grants
Resilient Electricity Networks for a productive Grid Architecture (RENGA)
用于高效电网架构的弹性电力网络 (RENGA)
- 批准号:
EP/R030235/1 - 财政年份:2018
- 资助金额:
$ 124.6万 - 项目类别:
Research Grant
Medium Voltage DC Systems in Electricity Distribution Networks
配电网络中的中压直流系统
- 批准号:
2118057 - 财政年份:2018
- 资助金额:
$ 124.6万 - 项目类别:
Studentship
A Seamless Integration of Communications, Networks, Distributed and Hierarchical Control for Reliable Conversion of Ocean Wave Energy to Electricity
通信、网络、分布式和分级控制的无缝集成,实现海浪能可靠地转换为电能
- 批准号:
1711859 - 财政年份:2017
- 资助金额:
$ 124.6万 - 项目类别:
Standard Grant