Modelling Accelerated Ageing and Degradation of Solid Oxide Fuel Cells (MAAD-SOFC)

固体氧化物燃料电池的加速老化和降解建模 (MAAD-SOFC)

基本信息

  • 批准号:
    EP/I037059/1
  • 负责人:
  • 金额:
    $ 73.24万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2011
  • 资助国家:
    英国
  • 起止时间:
    2011 至 无数据
  • 项目状态:
    已结题

项目摘要

A major hurdle in the successful commercialization of SOFCs is the degradation of the cell and stack components over long exposures at the high operating temperatures. Lifetime and reliability are two of the most critical issues for the success of SOFC systems. An SOFC system is supposed to run for several thousand hours without significant degradation in the output power. To assess lifetime of an SOFC, long-term tests are needed. Due to the enormous experimental efforts necessary to conduct such measurements with statistical confidence, the development of cells with improved durability is time-consuming and thus expensive. Another challenge is the analysis of the tested cells with respect to the physical failure mechanisms. As the total damage achieved during long-term tests is often low, the dominant degradation process is difficult to identify. In reliability engineering, accelerated life testing (ALT) is a well known method to address these problems. In an ALT, the life data obtained from aggravated test conditions are extrapolated to normal operating conditions by means of a model which fits the data to an appropriate life distribution and uses a life-stress relationship to project the life at normal operating conditions. One of the crucial factors in ALT is that the degradation mechanism should not change on aggravation of the test parameters. Therefore, it is imperative to understand the degradation mechanism SOFCs at the different operating conditions. Though possible, it is very challenging to predict such mechanisms. This necessitates the development of proper models which can predict the degradation mechanism. A model validated with experimental evidences can serve as a useful tool to understand the degradation mechanism of SOFCs and hence will help designing SOFCs with required degradation rate to sustain the operation challenges. The major factors which influence the degradation of SOFCs are temperature, thermal cycling, redox, load cycling and poisoning effects from fuel contaminants such as sulphur and carbon. Therefore, the effect of these factors will also have to be studied and integrated with ALT studies. The understanding gained on degradation from these experiments and the developed model can be utilized to develop new materials which can perform at the same level but at lower temperatures and also have better redox and poison (sulphur/carbon) tolerance.
SOFC成功商业化的一个主要障碍是电池和电池堆组件在高工作温度下长时间暴露后的降解。寿命和可靠性是SOFC系统成功的两个最关键的问题。SOFC系统应该运行数千小时而输出功率没有显著下降。为了评估SOFC的寿命,需要进行长期测试。由于进行具有统计置信度的这种测量所需的巨大实验努力,具有改进的耐久性的电池的开发是耗时的并且因此是昂贵的。另一个挑战是分析测试电池的物理故障机制。由于在长期试验期间所造成的总损害往往很低,因此很难确定主要的降解过程。在可靠性工程中,加速寿命试验(ALT)是解决这些问题的一种众所周知的方法。在ALT中,通过一个模型将从恶化试验条件下获得的寿命数据外推到正常运行条件下,该模型将数据拟合到适当的寿命分布,并使用寿命-应力关系来预测正常运行条件下的寿命。ALT的关键因素之一是降解机制不应随试验参数的恶化而改变。因此,了解SOFC在不同工况下的降解机理是非常必要的。尽管有可能,但预测这种机制非常具有挑战性。这需要开发能够预测降解机制的适当模型。通过实验验证的模型可以作为一个有用的工具来理解SOFC的降解机制,因此将有助于设计具有所需降解速率的SOFC,以承受操作挑战。影响SOFC降解的主要因素是温度、热循环、氧化还原、负荷循环以及燃料污染物如硫和碳的中毒效应。因此,还必须研究这些因素的影响,并与ALT研究相结合。从这些实验中获得的对降解的理解和开发的模型可用于开发新材料,这些材料可以在相同水平下但在较低的温度下发挥作用,并且具有更好的氧化还原和毒物(硫/碳)耐受性。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
In-situ temperature monitoring directly from cathode surface of an operating solid oxide fuel cell
  • DOI:
    10.1016/j.apenergy.2020.116013
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    11.2
  • 作者:
    E. Guk;M. Ranaweera;V. Venkatesan;Jung-Sik Kim;Woochul Jung
  • 通讯作者:
    E. Guk;M. Ranaweera;V. Venkatesan;Jung-Sik Kim;Woochul Jung
Overcoming carbon deactivation in biogas reforming using a hydrothermally synthesised nickel perovskite catalyst
  • DOI:
    10.1039/c4ra00846d
  • 发表时间:
    2014-07
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    S. E. Evans;O. Good;J. Staniforth;R. Mark Ormerod;R. Darton
  • 通讯作者:
    S. E. Evans;O. Good;J. Staniforth;R. Mark Ormerod;R. Darton
In-situ monitoring of temperature distribution in operating solid oxide fuel cell cathode using proprietary sensory techniques versus commercial thermocouples
  • DOI:
    10.1016/j.apenergy.2018.08.120
  • 发表时间:
    2018-11
  • 期刊:
  • 影响因子:
    11.2
  • 作者:
    E. Guk;Jung-Sik Kim;M. Ranaweera;V. Venkatesan;L. Jackson
  • 通讯作者:
    E. Guk;Jung-Sik Kim;M. Ranaweera;V. Venkatesan;L. Jackson
Parameters and their impacts on the temperature distribution and thermal gradient of solid oxide fuel cell
  • DOI:
    10.1016/j.apenergy.2019.03.034
  • 发表时间:
    2019-05
  • 期刊:
  • 影响因子:
    11.2
  • 作者:
    E. Guk;V. Venkatesan;S. Babar;L. Jackson;Jung-Sik Kim
  • 通讯作者:
    E. Guk;V. Venkatesan;S. Babar;L. Jackson;Jung-Sik Kim
A nickel doped perovskite catalyst for reforming methane rich biogas with minimal carbon deposition
  • DOI:
    10.1039/c4gc00782d
  • 发表时间:
    2014-09
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    S. E. Evans;J. Staniforth;R. Darton;R. Mark Ormerod
  • 通讯作者:
    S. E. Evans;J. Staniforth;R. Darton;R. Mark Ormerod
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Ormerod其他文献

Robert Ormerod的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Ormerod', 18)}}的其他基金

Fuelling the Future: Sustainable energy approaches for sustainable communities
推动未来:可持续社区的可持续能源方法
  • 批准号:
    EP/G063184/1
  • 财政年份:
    2010
  • 资助金额:
    $ 73.24万
  • 项目类别:
    Research Grant
Towards a molecular understanding of deactivation issues in methane reforming catalysts
从分子角度理解甲烷重整催化剂失活问题
  • 批准号:
    EP/E030580/1
  • 财政年份:
    2007
  • 资助金额:
    $ 73.24万
  • 项目类别:
    Research Grant

相似海外基金

EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 73.24万
  • 项目类别:
    Standard Grant
Accelerated discovery of ultra-fast ionic conductors with machine learning
通过机器学习加速超快离子导体的发现
  • 批准号:
    24K08582
  • 财政年份:
    2024
  • 资助金额:
    $ 73.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Micro-manufacturing of tissue patterned organ-chips for accelerated deployment of new medicines (Patterned OrganChips)
用于加速新药部署的组织图案化器官芯片的微制造(图案化器官芯片)
  • 批准号:
    EP/Z531261/1
  • 财政年份:
    2024
  • 资助金额:
    $ 73.24万
  • 项目类别:
    Research Grant
Digital Solutions For Accelerated Battery Testing
加速电池测试的数字解决方案
  • 批准号:
    10107050
  • 财政年份:
    2024
  • 资助金额:
    $ 73.24万
  • 项目类别:
    EU-Funded
Accelerated carbon dioxide release from sedimentary rocks in a warming world
在变暖的世界中沉积岩加速二氧化碳释放
  • 批准号:
    NE/Y000838/1
  • 财政年份:
    2024
  • 资助金额:
    $ 73.24万
  • 项目类别:
    Research Grant
CAREER: Open-source GPU-accelerated computational infrastructure for coastal fluid-structure interaction in extreme hydrodynamic conditions
职业:极端​​水动力条件下沿海流固耦合的开源 GPU 加速计算基础设施
  • 批准号:
    2338313
  • 财政年份:
    2024
  • 资助金额:
    $ 73.24万
  • 项目类别:
    Standard Grant
Artificial intelligence coupled to automation for accelerated medicine design
人工智能与自动化相结合,加速药物设计
  • 批准号:
    EP/Z533038/1
  • 财政年份:
    2024
  • 资助金额:
    $ 73.24万
  • 项目类别:
    Research Grant
Development of Understanding and Preparation for Machine learning for Accelerated Carbonation Technology Pelletisation Process - Carbon8
加速碳酸化技术造粒过程的机器学习的理解和准备的发展 - Carbon8
  • 批准号:
    10091589
  • 财政年份:
    2024
  • 资助金额:
    $ 73.24万
  • 项目类别:
    Collaborative R&D
Human models for accelerated robot learning and human-robot interaction
用于加速机器人学习和人机交互的人体模型
  • 批准号:
    DP240101458
  • 财政年份:
    2024
  • 资助金额:
    $ 73.24万
  • 项目类别:
    Discovery Projects
Drag Prediction over Rough Surfaces using Hardware-Accelerated Simulations
使用硬件加速模拟对粗糙表面进行阻力预测
  • 批准号:
    DE230100754
  • 财政年份:
    2024
  • 资助金额:
    $ 73.24万
  • 项目类别:
    Discovery Early Career Researcher Award
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了