Towards a fundamental understanding of smart windows coating based on doped vanadium oxides

对基于掺杂氧化钒的智能窗户涂层有一个基本的了解

基本信息

  • 批准号:
    EP/J001775/2
  • 负责人:
  • 金额:
    $ 1.35万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2013
  • 资助国家:
    英国
  • 起止时间:
    2013 至 无数据
  • 项目状态:
    已结题

项目摘要

Concerns about climate change and the extinction of fossil fuels have brought much recent attention to alternative ways of producing energy, but also to strategies to reduce energy consumption. It is estimated that the built environment consumes 30-40% of the primary energy in the world, most of which goes to cooling, heating and lighting. Recent research has demonstrated that it is possible to significantly reduce the energy utilisation in buildings by employing "smart" windows, which are capable of adapting to external weather conditions in a way that minimises the need for heating or air conditioning. A very promising technology to achieve this goal is based on coating glass windows with a very thin film of modified vanadium oxide (VO2). This oxide, which does not conduct electricity at room temperature, is known to become a metallic conductor at temperatures above 68 degrees Celsius. This transition can be tuned to take place at room temperature by introducing some impurity atoms (e.g. tungsten), and it is accompanied by a significant change in the optical properties of the material. Thus, in hot weather, the coating film is metallic and reflects most of the infrared radiation from the Sun, keeping the interior cool, but still allows most visible light to pass. During cooler weather the window coating transforms back to the low-temperature phase, which allows more of the infrared radiation to pass, decreasing the need for internal heating. In this way, large amounts of energy can be saved.I propose here to employ advanced computer simulation techniques to investigate a group of phenomena associated with the design and functioning of VO2-based window coatings. I will first focus on the fundamental and not-yet-resolved design problem for this technology: how to dope the VO2 films in a way that not only the transition temperature is shifted to the required value, but also the colour of the films and the optical properties of the film are acceptable for commercial use. Other important associated phenomena will also be investigated. For example, recent experiments have shown that the introduction of gold nanoparticles allows the modification of the colour of the films, which is important for aesthetic reasons, as tungsten-doped VO2 exhibits a rather unpleasant brown/yellow shade. It has even been suggested that doping with gold nanoparticles can decrease the switching temperature of the film, possibly due to electron transfer to the oxide. I aim to provide a microscopic description of these phenomena. Finally, I also want to understand how the films adhere to the window glass. The adherence of current films is not perfect, which can limit their durability or range of applications. So I want to gain insight into the microscopic factors controlling adhesion, with the hope that this knowledge will lead to more robust and versatile coating technologies.Although modern advances in computer power and theoretical algorithms have made possible the investigation of realistic models of many materials, VO2 belongs to a class of compounds which are particularly challenging for computational modelling. In these materials, which mainly include transition metal and rare earth compounds, the interactions between electrons are so strong that the typical independent-electron approximations employed in solid state calculations do not work well. However, in the last few years powerful and efficient new methods have been developed and implemented in mainstream computer codes, allowing for the first time a realistic modelling of these strongly correlated solids. Using these tools, I will be able to offer a microscopic description of the exciting range of phenomena at the basis of the smart windows coating technology.
对气候变化和化石燃料枯竭的担忧最近引起了人们对替代能源生产方式的关注,同时也引起了人们对减少能源消耗的战略的关注。据估计,建筑环境消耗了世界上30-40%的一次能源,其中大部分用于制冷、供暖和照明。最近的研究表明,通过采用“智能”窗户可以显着降低建筑物的能源利用率,“智能”窗户能够适应外部天气条件,最大限度地减少对供暖或空调的需求。实现这一目标的一项非常有前途的技术是在玻璃窗上涂上一层非常薄的改性氧化钒 (VO2) 薄膜。这种氧化物在室温下不导电,但在 68 摄氏度以上的温度下会变成金属导体。通过引入一些杂质原子(例如钨),可以调整这种转变在室温下发生,并且伴随着材料光学特性的显着变化。因此,在炎热的天气里,涂膜是金属的,可以反射大部分来自太阳的红外辐射,保持内部凉爽,但仍然允许大多数可见光通过。在较冷的天气期间,窗户涂层会转回低温阶段,从而允许更多的红外辐射通过,从而减少内部加热的需要。通过这种方式,可以节省大量的能源。我在这里建议采用先进的计算机模拟技术来研究与基于 VO2 的窗户涂层的设计和功能相关的一组现象。我将首先关注该技术尚未解决的基本设计问题:如何对 VO2 薄膜进行掺杂,不仅使转变温度达到所需值,而且使薄膜的颜色和光学性能适合商业用途。其他重要的相关现象也将被研究。例如,最近的实验表明,金纳米粒子的引入可以改变薄膜的颜色,这对于美观来说很重要,因为掺钨的 VO2 呈现出相当令人不愉快的棕色/黄色色调。甚至有人提出,掺杂金纳米颗粒可以降低薄膜的转换温度,这可能是由于电子转移到氧化物所致。我的目的是提供这些现象的微观描述。最后,我还想了解薄膜是如何粘附在车窗玻璃上的。当前薄膜的粘附性并不完美,这会限制其耐用性或应用范围。因此,我想深入了解控制粘附力的微观因素,希望这些知识能够带来更稳健、更通用的涂层技术。尽管计算机能力和理论算法的现代进步使得研究许多材料的真实模型成为可能,但 VO2 属于一类对计算建模特别具有挑战性的化合物。在这些主要包括过渡金属和稀土化合物的材料中,电子之间的相互作用非常强,以至于固态计算中采用的典型独立电子近似不能很好地发挥作用。然而,在过去几年中,强大而高效的新方法已经在主流计算机代码中开发和实施,首次允许对这些强相关实体进行真实建模。使用这些工具,我将能够对基于智能窗户涂层技术的一系列令人兴奋的现象进行微观描述。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Spin polarization, orbital occupation and band gap opening in vanadium dioxide: The effect of screened Hartree-Fock exchange
二氧化钒中的自旋极化、轨道占据和带隙打开:屏蔽 Hartree-Fock 交换的影响
  • DOI:
    10.1016/j.cplett.2014.05.070
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Wang H
  • 通讯作者:
    Wang H
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ricardo Grau-Crespo其他文献

Cation distribution and mixing thermodynamics in Fe/Ni thiospinels
  • DOI:
    10.1016/j.gca.2012.04.007
  • 发表时间:
    2012-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Saima Haider;Ricardo Grau-Crespo;Antony J. Devey;Nora H. de Leeuw
  • 通讯作者:
    Nora H. de Leeuw

Ricardo Grau-Crespo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ricardo Grau-Crespo', 18)}}的其他基金

Towards a fundamental understanding of smart windows coating based on doped vanadium oxides
对基于掺杂氧化钒的智能窗户涂层有一个基本的了解
  • 批准号:
    EP/J001775/1
  • 财政年份:
    2011
  • 资助金额:
    $ 1.35万
  • 项目类别:
    Research Grant

相似海外基金

CAREER: Towards a Fundamental Understanding of Interface Strain-Driven Pseudomorphic Phase Transformation in Multilayered Nanocomposites
职业生涯:对多层纳米复合材料中界面应变驱动的赝晶相变有一个基本的了解
  • 批准号:
    2340965
  • 财政年份:
    2024
  • 资助金额:
    $ 1.35万
  • 项目类别:
    Standard Grant
Fundamental research towards behavior change: Understanding the magnitude and formation processes of pro-biodiversity behavior.
行为改变的基础研究:了解支持生物多样性行为的程度和形成过程。
  • 批准号:
    23H03583
  • 财政年份:
    2023
  • 资助金额:
    $ 1.35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Towards a fundamental understanding of the functioning of crystal sponges: Complementary insights from lab and in silico experiments
对水晶海绵的功能有一个基本的了解:来自实验室和计算机实验的补充见解
  • 批准号:
    2600258
  • 财政年份:
    2021
  • 资助金额:
    $ 1.35万
  • 项目类别:
    Studentship
Collaborative Research: Towards a Fundamental Understanding of a Simple, Effective and Robust Approach for Mitigating Friction in Nanopositioning Stages
合作研究:从根本上理解一种简单、有效和稳健的减轻纳米定位阶段摩擦的方法
  • 批准号:
    1855390
  • 财政年份:
    2019
  • 资助金额:
    $ 1.35万
  • 项目类别:
    Standard Grant
Collaborative Research: Towards a Fundamental Understanding of a Simple, Effective and Robust Approach for Mitigating Friction in Nanopositioning Stages
合作研究:从根本上理解一种简单、有效和稳健的减轻纳米定位阶段摩擦的方法
  • 批准号:
    1855354
  • 财政年份:
    2019
  • 资助金额:
    $ 1.35万
  • 项目类别:
    Standard Grant
Towards improved fundamental understanding of ice formation
提高对冰形成的基本了解
  • 批准号:
    2084026
  • 财政年份:
    2018
  • 资助金额:
    $ 1.35万
  • 项目类别:
    Studentship
Fundamental Understanding of Negative Gas Adsorption in Mesoporous Solids: Towards threshold sensitive mechanical actuators
对介孔固体中负气体吸附的基本理解:迈向阈值敏感机械致动器
  • 批准号:
    391704421
  • 财政年份:
    2017
  • 资助金额:
    $ 1.35万
  • 项目类别:
    Research Grants
Towards a fundamental understanding of the acquired nanoparticle protein corona
对获得的纳米颗粒蛋白冠有一个基本的了解
  • 批准号:
    511810-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 1.35万
  • 项目类别:
    University Undergraduate Student Research Awards
Fundamental study towards understanding of nucleus structure from Quantum Chromodynamics
从量子色动力学理解原子核结构的基础研究
  • 批准号:
    16H06002
  • 财政年份:
    2016
  • 资助金额:
    $ 1.35万
  • 项目类别:
    Grant-in-Aid for Young Scientists (A)
SusChEM/Collaborative Research: Fundamental Understanding of Foaming Process towards a New Warm Mix Asphalt Technology
SusChEM/合作研究:对新型温拌沥青技术发泡过程的基本了解
  • 批准号:
    1300286
  • 财政年份:
    2013
  • 资助金额:
    $ 1.35万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了