Providing Autonomous Capabilities for Evolving SCADA (PACES)

为不断发展的 SCADA (PACES) 提供自主功能

基本信息

  • 批准号:
    EP/J012149/1
  • 负责人:
  • 金额:
    $ 79.39万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2012
  • 资助国家:
    英国
  • 起止时间:
    2012 至 无数据
  • 项目状态:
    已结题

项目摘要

SCADA (Supervisory Control And Data Acquisition) has proved to be a powerful and successful technology. Across the world SCADA systems are deeply integrated into the large scale infrastructures used in power generation, power transmission, radioactive waste processing, manufacturing, refining, water treatment, space exploration and various military applications. Traditionally SCADA implementations adopt a centralised architecture, either across one single geographical site, or across multiple sites using proprietary communications protocols. In spite of this trend to distributed solutions the supervisory control function continues to be performed at a centralised location, typically supervised by trained personnel using compliant HMI (Human-Machine Interface) tools. This centralised architecture presents overwhelming problems for system designers needing to integrate ever more diverse components and to scale to larger, more complex deployments. Moreover, this increasing complexity can realistically only be achieved through the adoption of autonomous or intelligent system components that can replace the supervisory function provided by humans. More recent trends show SCADA systems incorporating widely available COTS (Commercial Off-The-Shelf) software to deliver functionality and adopting recognised communications standards such as TCP/IP to facilitate integration and remote administration. The use of COTS increases available functionality and robustness but introduces new vulnerabilities. Attackers can exploit their knowledge of such widely available components and attacks can be 'designed' in ways previously not possible with the earlier proprietary systems. Closely linked to security is the need for fault tolerance. Here too we must develop intelligent SCADA systems that can self-monitor and detect anomalous behaviour (resulting from malicious attack or component fault) and invoke response that protects the goals of the whole system.The next generation of SCADA systems must develop a set of autonomous and intelligent capabilities to address a number of pressing requirements. Problems presented by increasing process complexity, advances in sensor technologies, the increasing demand for integration with other enterprise solutions, increasingly inadequate security protection and a higher required standard of fault tolerance must all be solved. To provide solutions to these problems the proposed research focuses on the development of a novel Multi-Agent System (MAS) architecture. This architecture is integrated with an advanced event reasoning framework that can fully exploit sensor data and domain knowledge, including treatment of inherent uncertainties, incompleteness and inconsistency to autonomously infer system state and crucially to inform human and autonomous decision makers in the system. Increased autonomy presents new challenges of system security. The next generation of autonomous SCADA must detect, diagnose and respond in real-time to security breaches and anomalous behaviours. The proposed research exploits new Deep Packet Inspection capabilities and network traffic analysis to develop a unique 'cyber-sensor', providing visibility of overall system health and integrity to human operators and autonomous components. Brought together, these novel research outputs will equip the next generation of autonomous SCADA systems with the capabilities to respond in real-time to evolving situations, self-awareness of changes and abnormal behaviours, fault and noise tolerance, and real-time decision support.
SCADA(Supervisory Control And Data Acquisition)已被证明是一种强大而成功的技术。在世界各地,SCADA系统被深度集成到用于发电,输电,放射性废物处理,制造,炼油,水处理,太空探索和各种军事应用的大型基础设施中。传统上,SCADA实施采用集中式架构,或者跨单个地理站点,或者跨使用专有通信协议的多个站点。尽管有这种分布式解决方案的趋势,但监督控制功能仍然在集中位置执行,通常由经过培训的人员使用兼容的HMI(人机界面)工具进行监督。这种集中式架构给系统设计人员带来了巨大的问题,他们需要集成更多不同的组件,并扩展到更大、更复杂的部署。此外,这种日益增加的复杂性实际上只能通过采用自主或智能系统组件来实现,这些组件可以取代人类提供的监督功能。最近的趋势表明SCADA系统采用广泛可用的COTS(商业现成)软件来提供功能,并采用公认的通信标准(如TCP/IP)来促进集成和远程管理。COTS的使用增加了可用的功能和鲁棒性,但引入了新的漏洞。攻击者可以利用他们对这些广泛可用的组件的了解,并且可以以以前不可能使用早期专有系统的方式“设计”攻击。与安全性密切相关的是容错的需要。在这里,我们也必须开发智能SCADA系统,它可以自我监控和检测异常行为(由恶意攻击或组件故障引起),并调用响应,以保护整个系统的目标。下一代SCADA系统必须开发一套自主和智能的功能,以满足一些紧迫的要求。过程复杂性的增加、传感器技术的进步、与其他企业解决方案的集成需求的增加、安全保护的日益不足以及更高的容错标准等问题都必须得到解决。为了解决这些问题,建议的研究重点是开发一种新的多智能体系统(MAS)的体系结构。该架构集成了一个先进的事件推理框架,可以充分利用传感器数据和领域知识,包括处理固有的不确定性,不完整性和不一致性,自主推断系统状态,并至关重要的是告知人类和自主决策者在系统中。自主性的提高对系统安全提出了新的挑战。下一代自主SCADA必须实时检测、诊断和响应安全漏洞和异常行为。拟议的研究利用新的深度数据包检测功能和网络流量分析来开发一种独特的“网络传感器”,为人类操作员和自主组件提供整体系统健康和完整性的可见性。这些新的研究成果将使下一代自主SCADA系统能够实时响应不断变化的情况,自我意识的变化和异常行为,容错和噪声容限以及实时决策支持。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Foundations of Information and Knowledge Systems - 9th International Symposium, FoIKS 2016, Linz, Austria, March 7-11, 2016. Proceedings
信息和知识系统基础 - 第九届国际研讨会,FoIKS 2016,奥地利林茨,2016 年 3 月 7-11 日。会议记录
  • DOI:
    10.1007/978-3-319-30024-5_2
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bauters K
  • 通讯作者:
    Bauters K
Modelling and Reasoning with Uncertain Event-observations for Event Inference
  • DOI:
    10.5220/0006254103080317
  • 发表时间:
    2017-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Calderwood;Kevin McAreavey;Weiru Liu;Jun Hong
  • 通讯作者:
    S. Calderwood;Kevin McAreavey;Weiru Liu;Jun Hong
A Syntactic Approach to Revising Epistemic States with Uncertain Inputs
修正具有不确定输入的认知状态的句法方法
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bauters, K.
  • 通讯作者:
    Bauters, K.
CAN(Plan)+:Extending the Operational Semantics of the BDI Architecture to dela with Uncertain Information.
CAN(计划):将 BDI 架构的操作语义扩展到不确定信息的处理。
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bauters, K
  • 通讯作者:
    Bauters, K
Managing Different Sources of Uncertainty in a BDI Framework in a Principled Way with Tractable Fragments
使用可处理的片段以有原则的方式管理 BDI 框架中的不同来源的不确定性
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Weiru Liu其他文献

A general framework for measuring inconsistency through minimal inconsistent sets
通过最小不一致集来衡量不一致性的通用框架
  • DOI:
    10.1007/s10115-010-0295-y
  • 发表时间:
    2011-04
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Kedian Mu;Weiru Liu;Zhi Jin
  • 通讯作者:
    Zhi Jin
Combining Uncertain Outputs from Multiple Ontology Matchers
组合多个本体匹配器的不确定输出
  • DOI:
    10.1007/978-3-540-75410-7_15
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ying Wang;Weiru Liu;D. Bell
  • 通讯作者:
    D. Bell
. (2014). Finding the most descriptive substructures in graphs with discrete and numeric labels. Journal of Intelligent Information Systems, 42(2), 307-332.
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jianbing Ma;Weiru Liu;S. Benferhat
  • 通讯作者:
    S. Benferhat
An Algorithm for Bayesian Belief Network Construction from Data
一种根据数据构建贝叶斯置信网络的算法
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jie Cheng;David Bell;Weiru Liu
  • 通讯作者:
    Weiru Liu
Risk-aware Planning in BDI Agents
BDI Agent 中的风险意识规划

Weiru Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Weiru Liu', 18)}}的其他基金

CHAI: Cyber Hygiene in AI enabled domestic life
CHAI:人工智能赋能家庭生活中的网络卫生
  • 批准号:
    EP/T026707/1
  • 财政年份:
    2020
  • 资助金额:
    $ 79.39万
  • 项目类别:
    Research Grant
Reasoning with Uncertainty and Inconsistency in Structured Scientific Knowledge
结构化科学知识中不确定性和不一致的推理
  • 批准号:
    EP/D070864/1
  • 财政年份:
    2007
  • 资助金额:
    $ 79.39万
  • 项目类别:
    Research Grant

相似海外基金

Advanced AI and RobotIcS for autonomous task pErformance
先进的人工智能和机器人控制系统可实现自主任务执行
  • 批准号:
    10110390
  • 财政年份:
    2024
  • 资助金额:
    $ 79.39万
  • 项目类别:
    EU-Funded
I-Corps: Networked Autonomous-humanoid Security Robot
I-Corps:网络化自主人形安全机器人
  • 批准号:
    2348931
  • 财政年份:
    2024
  • 资助金额:
    $ 79.39万
  • 项目类别:
    Standard Grant
CPS: Small: NSF-DST: Autonomous Operations of Multi-UAV Uncrewed Aerial Systems using Onboard Sensing to Monitor and Track Natural Disaster Events
CPS:小型:NSF-DST:使用机载传感监测和跟踪自然灾害事件的多无人机无人航空系统自主操作
  • 批准号:
    2343062
  • 财政年份:
    2024
  • 资助金额:
    $ 79.39万
  • 项目类别:
    Standard Grant
I-Corps: Autonomous Aquabots for Water Main Inspections
I-Corps:用于水管检查的自主 Aquabot
  • 批准号:
    2345478
  • 财政年份:
    2024
  • 资助金额:
    $ 79.39万
  • 项目类别:
    Standard Grant
I-Corps: Translation potential of a semi-autonomous feedback device to enable manual ventilation
I-Corps:半自主反馈设备的翻译潜力,以实现手动通气
  • 批准号:
    2420392
  • 财政年份:
    2024
  • 资助金额:
    $ 79.39万
  • 项目类别:
    Standard Grant
CAREER: Designing Autonomous Battery-Free Robotic Sensors
职业:设计自主无电池机器人传感器
  • 批准号:
    2338736
  • 财政年份:
    2024
  • 资助金额:
    $ 79.39万
  • 项目类别:
    Continuing Grant
SBIR Phase I: Optimizing Safety and Fuel Efficiency in Autonomous Rendezvous and Proximity Operations (RPO) of Uncooperative Objects
SBIR 第一阶段:优化不合作物体自主交会和邻近操作 (RPO) 的安全性和燃油效率
  • 批准号:
    2311379
  • 财政年份:
    2024
  • 资助金额:
    $ 79.39万
  • 项目类别:
    Standard Grant
Trusted Interaction for Autonomous Vehicles in a Smart City
智能城市中自动驾驶汽车的可信交互
  • 批准号:
    24K15045
  • 财政年份:
    2024
  • 资助金额:
    $ 79.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Probabilistic Inference Based Utility Evaluation and Path Generation for Active Autonomous Exploration of USVs in Unknown Confined Marine Environments
基于概率推理的效用评估和路径生成,用于未知受限海洋环境中 USV 主动自主探索
  • 批准号:
    EP/Y000862/1
  • 财政年份:
    2024
  • 资助金额:
    $ 79.39万
  • 项目类别:
    Research Grant
CAREER: Temporal Causal Reinforcement Learning and Control for Autonomous and Swarm Cyber-Physical Systems
职业:自治和群体网络物理系统的时间因果强化学习和控制
  • 批准号:
    2339774
  • 财政年份:
    2024
  • 资助金额:
    $ 79.39万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了