Bayesian Nonparametric Inference for Stochastic Epidemic Models
随机流行病模型的贝叶斯非参数推理
基本信息
- 批准号:EP/J013528/1
- 负责人:
- 金额:$ 12.29万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2012
- 资助国家:英国
- 起止时间:2012 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Understanding the spread of communicable infectious diseases is of great importance in order to prevent major future outbreaks and therefore it remains high on the global scientific agenda. It has been widely recognised that mathematical and statistical modelling has become a valuable tool in the analysis of infectious disease dynamics by supporting the development of control strategies, informing policy-making at the highest levels, and in general playing a fundamental role in the fight against the spread of disease. Despite the enormous attention given to the development of methods for efficient parameter estimation, there has been relatively little activity in the area of non-parametric inference. That is, drawing inference for the quantities which govern transmission, i) the force of infection and ii) the period during which an individual remains infectious, without making certain modelling assumptions about its (parametric) functional form or that it belongs to a certain family of parametric distributions. The proposed research is concerned with the development of new methodology which will enable non-parametric estimation of the parameters which govern transmission within a Bayesian framework and the application of the proposed methods to large disease outbreak datasets.
了解传染性疾病的传播对于预防未来的重大暴发非常重要,因此它仍然是全球科学议程上的重要议题。人们普遍认识到,数学和统计模型已成为分析传染病动态的宝贵工具,它支持制定控制战略,为最高一级的决策提供信息,并在防治疾病传播方面发挥基本作用。尽管对有效参数估计方法的发展给予了极大的关注,但在非参数推理领域的活动相对较少。也就是说,在没有对其(参数)函数形式或属于某一参数分布族做出某些建模假设的情况下,对控制传播的数量进行推断,即i)感染力和ii)个体保持传染性的时间。拟议的研究涉及新方法的发展,该方法将能够在贝叶斯框架内对控制传播的参数进行非参数估计,并将拟议的方法应用于大型疾病暴发数据集。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Machine Learning for Healthcare Technologies
医疗保健技术的机器学习
- DOI:
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Hensman, T.
- 通讯作者:Hensman, T.
Bayesian Nonparametrics for Stochastic Epidemic Models
- DOI:10.1214/17-sts617
- 发表时间:2018-02-01
- 期刊:
- 影响因子:5.7
- 作者:Kypraios, Theodore;O'Neill, Philip D.
- 通讯作者:O'Neill, Philip D.
Bayesian Non-Parametric Inference for Infectious Disease Data
传染病数据的贝叶斯非参数推理
- DOI:10.48550/arxiv.1411.2624
- 发表时间:2014
- 期刊:
- 影响因子:0
- 作者:Knock Edward S.
- 通讯作者:Knock Edward S.
Bayesian non-parametric inference for stochastic epidemic models using Gaussian Processes.
- DOI:10.1093/biostatistics/kxw011
- 发表时间:2016-10
- 期刊:
- 影响因子:0
- 作者:Xu X;Kypraios T;O'Neill PD
- 通讯作者:O'Neill PD
Bayesian nonparametric inference for stochastic epidemic models
随机流行病模型的贝叶斯非参数推理
- DOI:
- 发表时间:2015
- 期刊:
- 影响因子:0
- 作者:Xu Xiaoguang
- 通讯作者:Xu Xiaoguang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Theodore Kypraios其他文献
Uncertainty mapping and probabilistic tractography using Simulation-based Inference in diffusion MRI: A comparison with classical Bayes
在扩散磁共振成像中使用基于模拟的推理进行不确定性映射和概率性纤维束追踪:与经典贝叶斯的比较
- DOI:
10.1016/j.media.2025.103580 - 发表时间:
2025-07-01 - 期刊:
- 影响因子:11.800
- 作者:
J.P. Manzano-Patrón;Michael Deistler;Cornelius Schröder;Theodore Kypraios;Pedro J. Gonçalves;Jakob H. Macke;Stamatios N. Sotiropoulos - 通讯作者:
Stamatios N. Sotiropoulos
Efficient $$\hbox {SMC}^2$$ schemes for stochastic kinetic models
- DOI:
10.1007/s11222-017-9789-8 - 发表时间:
2017-11-10 - 期刊:
- 影响因子:1.600
- 作者:
Andrew Golightly;Theodore Kypraios - 通讯作者:
Theodore Kypraios
Modelling the effect of antimicrobial treatment on carriage of hospital pathogens with application to MRSA.
应用 MRSA 模拟抗菌治疗对医院病原体携带的影响。
- DOI:
10.1093/biostatistics/kxv020 - 发表时间:
2016 - 期刊:
- 影响因子:2.1
- 作者:
E. Verykouki;Theodore Kypraios;Philip D. O'Neill - 通讯作者:
Philip D. O'Neill
Theodore Kypraios的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Nonparametric Bayesian inference with single and multivariate random probability measures; heavy tailed time series.
使用单变量和多元随机概率测量的非参数贝叶斯推理;
- 批准号:
RGPIN-2018-04008 - 财政年份:2022
- 资助金额:
$ 12.29万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Foundations for Bayesian Nonparametric Causal Inference
职业:贝叶斯非参数因果推理基础
- 批准号:
2144933 - 财政年份:2022
- 资助金额:
$ 12.29万 - 项目类别:
Continuing Grant
Nonparametric Bayesian inference with single and multivariate random probability measures; heavy tailed time series.
使用单变量和多元随机概率测量的非参数贝叶斯推理;
- 批准号:
RGPIN-2018-04008 - 财政年份:2021
- 资助金额:
$ 12.29万 - 项目类别:
Discovery Grants Program - Individual
Bayesian Nonparametric Modeling and Inference Methods for Point Processes
点过程的贝叶斯非参数建模和推理方法
- 批准号:
1950902 - 财政年份:2020
- 资助金额:
$ 12.29万 - 项目类别:
Standard Grant
Nonparametric Bayesian inference with single and multivariate random probability measures; heavy tailed time series.
使用单变量和多元随机概率测量的非参数贝叶斯推理;
- 批准号:
RGPIN-2018-04008 - 财政年份:2020
- 资助金额:
$ 12.29万 - 项目类别:
Discovery Grants Program - Individual
Nonparametric inference and Bayesian computing
非参数推理和贝叶斯计算
- 批准号:
RGPIN-2015-05200 - 财政年份:2019
- 资助金额:
$ 12.29万 - 项目类别:
Discovery Grants Program - Individual
Nonparametric Bayesian inference with single and multivariate random probability measures; heavy tailed time series.
使用单变量和多元随机概率测量的非参数贝叶斯推理;
- 批准号:
RGPIN-2018-04008 - 财政年份:2019
- 资助金额:
$ 12.29万 - 项目类别:
Discovery Grants Program - Individual
Nonparametric Bayesian inference with single and multivariate random probability measures; heavy tailed time series.
使用单变量和多元随机概率测量的非参数贝叶斯推理;
- 批准号:
RGPIN-2018-04008 - 财政年份:2018
- 资助金额:
$ 12.29万 - 项目类别:
Discovery Grants Program - Individual
Fast and Robust Gaussian Process Inference for Bayesian Nonparametric Learning
用于贝叶斯非参数学习的快速且稳健的高斯过程推理
- 批准号:
1907316 - 财政年份:2018
- 资助金额:
$ 12.29万 - 项目类别:
Standard Grant
Nonparametric inference and Bayesian computing
非参数推理和贝叶斯计算
- 批准号:
RGPIN-2015-05200 - 财政年份:2018
- 资助金额:
$ 12.29万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




