Finite time orbitally stabilizing synthesis of complex dynamic systems with bifurcations with application to biological systems
具有分岔的复杂动态系统的有限时间轨道稳定合成及其在生物系统中的应用
基本信息
- 批准号:EP/J018295/1
- 负责人:
- 金额:$ 41.98万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2012
- 资助国家:英国
- 起止时间:2012 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Stabilization, in finite time rather than asymptotically, of linear and non-linear dynamical systems is an active current area of research internationally. In much of the existing work finite time convergence of a Lyapunov function to the origin of the state space is achieved using an increasing condition on that Lyapunov function given by a differential inequality which is dependent upon the decay rate and both known and uncertain system parameters. The proof of finite time stability on the basis of such a strong Lyapunov function satisfying a differential inequality poses a challenge when compared to proofs of Lyapunov theorems relating to asymptotic stability considerations. The task can be further complicated when the paradigm requires not only a settling time estimate but also seeks to achieve parameter selections for a control strategy to ensure an apriori chosen settling time is achieved. Recent work by the investigators in the domain of mechanical systems has obtained corresponding results using a homogeneity approach where the methodology is founded on a quasihomogeneity principle of possibly discontinuous systems, and thus a broader range of uncertainty is permitted than in the existing literature. Finite time stability which is uniform in the initial data and in the uncertainty is possible, a feature that cannot be guaranteed using existing methods. A finite upper bound on the settling time is determined without the need to find a Lyapunov function satisfying a differential inequality. Work has developed a single Lyapunov function for uncertain, discontinuous mechanical systems to provide global finite time stability to the origin of the system in the presence of velocity jumps without having to analyze the Lyapunov function at the jump instants and has developed parameterisations of sliding mode controllers that ensure finite time stabilisation where the designer specifies a convergence time and controller parameters are explicitly computed as a function of the required convergence time. The current proof of concept demonstrates that finite time stability characteristics can be imposed in possibly discontinuous systems and provides an exciting platform to explore more complex practical scenarios of current interest. It is clear that current methods which analyse systems based upon an assumption of an infinite time horizon are frequently flawed. For example, individual clonal immune cell populations are required to expand and become activated for limited time. Further in the natural world, discontinuity is frequently found as a result of evolution. This project seeks to broaden the system class to which the developed theoretical framework can be applied to encompass such biological dynamics. One specific driver is to parameterise and assess the bifurcations present in the immune system, where a key paradigm is to investigate how a triggering event may move the immune system from the healthy to the autoimmune state and also how control paradigms can be used to postulate treatment to move the system back to the healthy state. Autoimmune disease affects 50 million people in the USA where it is one of the top ten causes of death in women under 65, is the second highest cause of chronic illness, and is the top cause of morbidity in women. The number of cases of autoimmune disease are rising across the world. This rise in the number of people affected and the absence of robust treatment regimes results in the incidence of autoimmune disease contributing significantly to the rise in healthcare spending as well as loss of productivity in the workforce and of course poor quality of life for those affected. There is currently no mechanism-based, conceptual understanding of autoimmune disease. This project seeks to develop and apply emerging methods from finite time stabilisation of uncertain possibly discontinuous dynamic systems to this problem.
线性和非线性动力系统的有限时间而非渐近稳定是目前国际上研究的一个活跃领域。在许多现有的工作中,李雅普诺夫函数的有限时间收敛到状态空间的原点是使用由微分不等式给出的李雅普诺夫函数的递增条件来实现的,该条件依赖于衰减率和已知和不确定的系统参数。与关于渐近稳定性的李雅普诺夫定理的证明相比,基于满足微分不等式的这种强李雅普诺夫函数的有限时间稳定性的证明是一个挑战。当范式不仅需要估计稳定时间,而且还需要实现控制策略的参数选择以确保实现先验选择的稳定时间时,任务可能会进一步复杂化。最近在机械系统领域的研究人员使用同质性方法获得了相应的结果,该方法建立在可能不连续系统的准同质性原理上,因此允许比现有文献更广泛的不确定性范围。有限时间稳定性在初始数据和不确定性中是一致的,这是现有方法无法保证的特征。在不需要寻找满足微分不等式的李雅普诺夫函数的情况下,确定了稳定时间的有限上界。工作人员开发了一个李雅普诺夫函数,用于不确定,不连续机械系统,在存在速度跳跃的情况下为系统原点提供全局有限时间稳定性,而无需分析跳跃瞬间的李雅普诺夫函数,并开发了滑模控制器的参数化,确保有限时间稳定性,其中设计者指定收敛时间,控制器参数作为所需收敛时间的函数显式计算。目前的概念证明表明,有限时间稳定性特征可以在可能的不连续系统中施加,并为探索当前感兴趣的更复杂的实际场景提供了一个令人兴奋的平台。很明显,目前基于无限时间范围假设来分析系统的方法经常是有缺陷的。例如,单个克隆免疫细胞群需要扩增并在有限的时间内被激活。此外,在自然界中,由于进化的结果,经常发现不连续性。该项目旨在扩大系统类,使已开发的理论框架可以应用于涵盖这种生物动力学。一个特定的驱动因素是参数化和评估免疫系统中存在的分支,其中一个关键范式是研究触发事件如何将免疫系统从健康状态移动到自身免疫状态,以及如何使用控制范式来假设治疗以将系统移回健康状态。自身免疫性疾病在美国影响着5000万人,是65岁以下妇女死亡的十大原因之一,是慢性疾病的第二大原因,也是妇女发病的首要原因。在世界范围内,自身免疫性疾病的病例数量正在上升。受影响人数的增加以及缺乏强有力的治疗制度导致自身免疫性疾病的发病率显著增加,导致医疗保健支出增加,劳动力生产力下降,当然还有受影响者的生活质量下降。目前对自身免疫性疾病还没有基于机制的概念性理解。该项目旨在开发和应用新兴的方法,从有限时间稳定的不确定可能不连续的动态系统来解决这个问题。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sliding Mode Observer Design for a Parabolic PDE in the Presence of Unknown Inputs
存在未知输入时抛物线偏微分方程的滑模观测器设计
- DOI:10.1002/asjc.1849
- 发表时间:2018-07
- 期刊:
- 影响因子:2.4
- 作者:Yury Orlov;Sohom Chakrabarty;Dongya Zhao;Sarah K. Spurgeon
- 通讯作者:Sarah K. Spurgeon
Modelling and Simulation of the Dynamics of the Antigen-Specific T Cell Response Using Variable Structure Control Theory.
- DOI:10.1371/journal.pone.0166163
- 发表时间:2016
- 期刊:
- 影响因子:3.7
- 作者:Anelone AJ;Spurgeon SK
- 通讯作者:Spurgeon SK
Synergies between the dynamics of the immune response of T cells and the variable structure control paradigm
T细胞免疫反应动力学与可变结构控制范式之间的协同作用
- DOI:10.1109/rasm.2015.7154580
- 发表时间:2015
- 期刊:
- 影响因子:0
- 作者:Anelone A
- 通讯作者:Anelone A
Control theory helps to resolve the measles paradox.
- DOI:10.1098/rsos.201891
- 发表时间:2021-04-28
- 期刊:
- 影响因子:3.5
- 作者:Anelone AJN;Hancock EJ;Klein N;Kim P;Spurgeon SK
- 通讯作者:Spurgeon SK
The Immune System: A Variable Structure Control Perspective
免疫系统:可变结构控制视角
- DOI:10.3182/20140824-6-za-1003.01047
- 发表时间:2014
- 期刊:
- 影响因子:0
- 作者:Anelone A
- 通讯作者:Anelone A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sarah Spurgeon其他文献
Simultaneous state and parameter estimation method for a conventional ozonation system
- DOI:
10.1016/j.compchemeng.2022.108018 - 发表时间:
2022-11-01 - 期刊:
- 影响因子:
- 作者:
Isaac Chairez;Asif Chalanga;Alex Poznyak;Sarah Spurgeon;Tatyana Poznyak - 通讯作者:
Tatyana Poznyak
Sarah Spurgeon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sarah Spurgeon', 18)}}的其他基金
Output Feedback Control for Uncertain Variable Structure Systems with Resets
带复位的不确定变结构系统的输出反馈控制
- 批准号:
EP/G053979/1 - 财政年份:2009
- 资助金额:
$ 41.98万 - 项目类别:
Research Grant
Robust Output Feedback Sliding Mode Control for Time-delay Systems
时滞系统的鲁棒输出反馈滑模控制
- 批准号:
EP/E020763/2 - 财政年份:2008
- 资助金额:
$ 41.98万 - 项目类别:
Research Grant
Robust Output Feedback Sliding Mode Control for Time-delay Systems
时滞系统的鲁棒输出反馈滑模控制
- 批准号:
EP/E020763/1 - 财政年份:2007
- 资助金额:
$ 41.98万 - 项目类别:
Research Grant
相似国自然基金
SERS探针诱导TAM重编程调控头颈鳞癌TIME的研究
- 批准号:82360504
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
华蟾素调节PCSK9介导的胆固醇代谢重塑TIME增效aPD-L1治疗肝癌的作用机制研究
- 批准号:82305023
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于MRI的机器学习模型预测直肠癌TIME中胶原蛋白水平及其对免疫T细胞调控作用的研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
结直肠癌TIME多模态分子影像分析结合深度学习实现疗效评估和预后预测
- 批准号:62171167
- 批准年份:2021
- 资助金额:57 万元
- 项目类别:面上项目
Time-lapse培养对人类胚胎植入前印记基因DNA甲基化的影响研究
- 批准号:
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
萱草花开放时间(Flower Opening Time)的生物钟调控机制研究
- 批准号:31971706
- 批准年份:2019
- 资助金额:59.0 万元
- 项目类别:面上项目
高频数据波动率统计推断、预测与应用
- 批准号:71971118
- 批准年份:2019
- 资助金额:50.0 万元
- 项目类别:面上项目
Time-of-Flight深度相机多径干扰问题的研究
- 批准号:61901435
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于线性及非线性模型的高维金融时间序列建模:理论及应用
- 批准号:71771224
- 批准年份:2017
- 资助金额:49.0 万元
- 项目类别:面上项目
Finite-time Lyapunov 函数和耦合系统的稳定性分析
- 批准号:11701533
- 批准年份:2017
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
$ 41.98万 - 项目类别:
Studentship
CAREER: Real-Time First-Principles Approach to Understanding Many-Body Effects on High Harmonic Generation in Solids
职业:实时第一性原理方法来理解固体高次谐波产生的多体效应
- 批准号:
2337987 - 财政年份:2024
- 资助金额:
$ 41.98万 - 项目类别:
Continuing Grant
CAREER: Secure Miniaturized Bio-Electronic Sensors for Real-Time In-Body Monitoring
职业:用于实时体内监测的安全微型生物电子传感器
- 批准号:
2338792 - 财政年份:2024
- 资助金额:
$ 41.98万 - 项目类别:
Continuing Grant
Conference: Scientific Assessment of the McMurdo Dry Valleys Ecosystem: Environmental Stewardship in a Time of Dynamic Change
会议:麦克默多干谷生态系统的科学评估:动态变化时期的环境管理
- 批准号:
2409327 - 财政年份:2024
- 资助金额:
$ 41.98万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track L: Smartphone Time-Resolved Luminescence Imaging and Detection (STRIDE) for Point-of-Care Diagnostics
NSF 融合加速器轨道 L:用于即时诊断的智能手机时间分辨发光成像和检测 (STRIDE)
- 批准号:
2344476 - 财政年份:2024
- 资助金额:
$ 41.98万 - 项目类别:
Standard Grant
PZT-hydrogel integrated active non-Hermitian complementary acoustic metamaterials with real time modulations through feedback control circuits
PZT-水凝胶集成有源非厄米互补声学超材料,通过反馈控制电路进行实时调制
- 批准号:
2423820 - 财政年份:2024
- 资助金额:
$ 41.98万 - 项目类别:
Standard Grant
NSF Postdoctoral Fellowship in Biology: Investigating a Novel Circadian Time-Keeping Mechanism Revealed by Environmental Manipulation
美国国家科学基金会生物学博士后奖学金:研究环境操纵揭示的新型昼夜节律机制
- 批准号:
2305609 - 财政年份:2024
- 资助金额:
$ 41.98万 - 项目类别:
Fellowship Award
CAREER: Towards Safety-Critical Real-Time Systems with Learning Components
职业:迈向具有学习组件的安全关键实时系统
- 批准号:
2340171 - 财政年份:2024
- 资助金额:
$ 41.98万 - 项目类别:
Continuing Grant
CSR: Small: Multi-FPGA System for Real-time Fraud Detection with Large-scale Dynamic Graphs
CSR:小型:利用大规模动态图进行实时欺诈检测的多 FPGA 系统
- 批准号:
2317251 - 财政年份:2024
- 资助金额:
$ 41.98万 - 项目类别:
Standard Grant
Postdoctoral Fellowship: EAR-PF: Taxon-Specific Cross-Scale Responses to Aridity Gradients through Time and across Space in the NW Great Basin of the United States
博士后奖学金:EAR-PF:美国西北部大盆地随时间和空间的干旱梯度的分类单元特异性跨尺度响应
- 批准号:
2305325 - 财政年份:2024
- 资助金额:
$ 41.98万 - 项目类别:
Fellowship Award














{{item.name}}会员




