Modelling Carbohydrate Solution Structure Using a Novel Combined Experimental-Computational Strategy

使用新颖的实验-计算组合策略对碳水化合物溶液结构进行建模

基本信息

  • 批准号:
    EP/J019623/1
  • 负责人:
  • 金额:
    $ 87.61万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2012
  • 资助国家:
    英国
  • 起止时间:
    2012 至 无数据
  • 项目状态:
    已结题

项目摘要

Our ability to make new discoveries in biochemistry and to develop new pharmaceuticals, advanced materials, energy sources and foodstuffs is increasingly dependent on our understanding of how biomolecules work at the molecular level. This in turn depends on our understanding of the structure of these biomolecules, and how their structures control their functions. This has been the guiding principle that has resulted in many of the advances in medicine, biology, chemistry and materials science of the last few decades. These advances have owed much to the structural information that has been obtained for proteins and nucleic acids by X-ray crystallography and NMR spectroscopy, and which has revolutionised our view of how life works. Unfortunately, these techniques are far more difficult to apply to the main class of biomolecules, carbohydrates. As a result, even though carbohydrates constitute around 99% of the biomass of our planet and perform an almost limitless number of roles in living systems, from algae to plants to humans, we don't really understand how they work in the same way that we do for proteins and DNA. The lack of definitive data means there is still considerable debate as to how we even define structure in carbohydrate polymers. In order to best capitalise on the great potential of carbohydrates in both science and industry we will have to understand to a much greater level of detail the molecular principles that govern their assembly, organisation and interactions with other molecules. This will require new approaches to studying carbohydrate structure.In order to meet this urgent requirement we will develop a combined computer modelling and spectroscopic lab-based approach to characterising the structures of carbohydrates, from simple sugars to key carbohydrate polymers known to be involved in regulating biological functions. Three components to the project will combine to generate a uniquely incisive new tool for glycobiology. First, high level quantum chemistry calculations will provide highly detailed spectra that are sensitive to all aspects of carbohydrate conformation, so allowing us to identify subtle structural differences. Secondly, as recent work shows that hydration plays an important role in controlling carbohydrate conformation, we will use molecular dynamics simulations to identify which structures are formed by each carbohydrate in the solvated environments in which they are found naturally and how they interact with the water molecules around them. Thirdly, we will measure highly detailed Raman spectra to provide the gold standard benchmarks required to prove that our calculations and modelling are correct. This will also provide us with a rigorous standard against which to validate the novel computer modelling. Although this development of new computational tools will be focused on the structures and behaviour of carbohydrates, the end product will also be widely applicable to all other biomolecules, particularly proteins and nucleic acids. The challenges we will overcome are those faced by researchers attempting to model how other molecules behave, e.g. how stable is the structure? how do its components interact? how do interactions with solvent water or other molecules affect its shape? Because our novel computational tools are generic they will be able to provide new insights into many other areas of research, such as protein-ligand interactions and DNA-drug molecule binding.
我们在生物化学方面取得新发现、开发新药、先进材料、能源和食品的能力越来越依赖于我们对生物分子在分子水平上如何工作的理解。这反过来又取决于我们对这些生物分子结构的理解,以及它们的结构如何控制它们的功能。在过去的几十年里,这一指导原则导致了医学、生物学、化学和材料科学的许多进步。这些进步很大程度上要归功于通过x射线晶体学和核磁共振光谱学获得的蛋白质和核酸的结构信息,这些信息彻底改变了我们对生命如何运作的看法。不幸的是,这些技术很难应用于主要的生物分子——碳水化合物。因此,尽管碳水化合物占地球生物量的99%左右,并且在从藻类到植物再到人类的生命系统中发挥着几乎无限的作用,但我们并不真正了解它们是如何以与蛋白质和DNA相同的方式起作用的。由于缺乏明确的数据,对于我们如何定义碳水化合物聚合物的结构仍存在相当大的争议。为了最大限度地利用碳水化合物在科学和工业上的巨大潜力,我们必须更详细地了解控制碳水化合物组装、组织和与其他分子相互作用的分子原理。这就需要研究碳水化合物结构的新方法。为了满足这一迫切需求,我们将开发一种结合计算机建模和光谱实验室的方法来表征碳水化合物的结构,从单糖到已知参与调节生物功能的关键碳水化合物聚合物。该项目的三个组成部分将结合起来,为糖生物学产生一个独特而敏锐的新工具。首先,高水平的量子化学计算将提供非常详细的光谱,对碳水化合物构象的各个方面都很敏感,因此使我们能够识别细微的结构差异。其次,由于最近的研究表明水合作用在控制碳水化合物构象中起着重要作用,我们将使用分子动力学模拟来确定每种碳水化合物在溶剂化环境中形成的结构,以及它们如何与周围的水分子相互作用。第三,我们将测量非常详细的拉曼光谱,以提供证明我们的计算和建模正确所需的黄金标准基准。这也将为我们提供一个严格的标准来验证新的计算机模型。虽然这种新的计算工具的发展将集中在碳水化合物的结构和行为上,但最终产品也将广泛适用于所有其他生物分子,特别是蛋白质和核酸。我们将克服的挑战是那些试图模拟其他分子行为的研究人员所面临的挑战,例如,结构有多稳定?它的组件是如何相互作用的?与溶剂水或其他分子的相互作用如何影响其形状?由于我们的新型计算工具是通用的,它们将能够为许多其他研究领域提供新的见解,例如蛋白质-配体相互作用和dna -药物分子结合。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Encyclopaedia of Analytical Chemistry
分析化学百科全书
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Blanch EW
  • 通讯作者:
    Blanch EW
Realistic sampling of amino acid geometries for a multipolar polarizable force field.
  • DOI:
    10.1002/jcc.24006
  • 发表时间:
    2015-09-15
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Hughes TJ;Cardamone S;Popelier PL
  • 通讯作者:
    Popelier PL
Prediction of conformationally dependent atomic multipole moments in carbohydrates.
  • DOI:
    10.1002/jcc.24215
  • 发表时间:
    2015-12-15
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Cardamone, Salvatore;Popelier, Paul L. A.
  • 通讯作者:
    Popelier, Paul L. A.
Synthesis of a heparin-related GlcN-IdoA sulfation-site variable disaccharide library and analysis by Raman and ROA spectroscopy.
  • DOI:
    10.1016/j.carres.2014.06.026
  • 发表时间:
    2014-12-05
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Miller, Gavin J.;Hansen, Steen U.;Barath, Marek;Johannessen, Christian;Blanch, Ewan W.;Jayson, Gordon C.;Gardiner, John M.
  • 通讯作者:
    Gardiner, John M.
Polarizable multipolar electrostatics for cholesterol
  • DOI:
    10.1016/j.cplett.2016.06.033
  • 发表时间:
    2016-08-16
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Fletcher, Timothy L.;Popelier, Paul L. A.
  • 通讯作者:
    Popelier, Paul L. A.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul Lode Albert Popelier其他文献

Paul Lode Albert Popelier的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul Lode Albert Popelier', 18)}}的其他基金

Time for a Step Change in Force Field Design
是时候对力场设计进行一步改变了
  • 批准号:
    EP/X024393/1
  • 财政年份:
    2023
  • 资助金额:
    $ 87.61万
  • 项目类别:
    Research Grant
Reliable computational prediction of molecular assembly
分子组装的可靠计算预测
  • 批准号:
    EP/K005472/1
  • 财政年份:
    2013
  • 资助金额:
    $ 87.61万
  • 项目类别:
    Fellowship
Novel force fields devised using machine learning
使用机器学习设计的新颖力场
  • 批准号:
    BB/F003617/1
  • 财政年份:
    2007
  • 资助金额:
    $ 87.61万
  • 项目类别:
    Research Grant

相似海外基金

Dietary Carbohydrate Quality and Brain Health
膳食碳水化合物质量和大脑健康
  • 批准号:
    489925
  • 财政年份:
    2023
  • 资助金额:
    $ 87.61万
  • 项目类别:
    Operating Grants
A novel neural pathway of preferential food selection for high carbohydrate and fat diets.
高碳水化合物和脂肪饮食的优先食物选择的新神经通路。
  • 批准号:
    23H02965
  • 财政年份:
    2023
  • 资助金额:
    $ 87.61万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
The impacts of carbohydrate and protein interactions in novel feed ingredients on amino acid digestibility
新型饲料原料中碳水化合物和蛋白质相互作用对氨基酸消化率的影响
  • 批准号:
    2886341
  • 财政年份:
    2023
  • 资助金额:
    $ 87.61万
  • 项目类别:
    Studentship
CAS-Climate: EAGER – Preventing Pore Clogging by Aggregated Carbohydrate Nanocrystals during CO2 Sequestration in Deep Saline Aquifers
CAS-Climate:EAGER — 在深层咸水层二氧化碳封存过程中防止聚集的碳水化合物纳米晶体堵塞孔隙
  • 批准号:
    2233585
  • 财政年份:
    2023
  • 资助金额:
    $ 87.61万
  • 项目类别:
    Standard Grant
Carbohydrate-Mediated Platelet Clearance
碳水化合物介导的血小板清除
  • 批准号:
    10608645
  • 财政年份:
    2023
  • 资助金额:
    $ 87.61万
  • 项目类别:
Significance of MUC1 with sialyl-Tn carbohydrate antigen in the management of breast cancer
MUC1 与唾液酸-Tn 碳水化合物抗原在乳腺癌治疗中的意义
  • 批准号:
    23K15459
  • 财政年份:
    2023
  • 资助金额:
    $ 87.61万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of carbohydrate force field to elucidate the mechanism of sugar chain interactions
开发碳水化合物力场以阐明糖链相互作用的机制
  • 批准号:
    23K18510
  • 财政年份:
    2023
  • 资助金额:
    $ 87.61万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Effect of Dietary Carbohydrate on Diabetes Control and Beta Cell Function in Children with Newly Diagnosed Diabetes.”
膳食碳水化合物对新诊断糖尿病儿童的糖尿病控制和 β 细胞功能的影响。
  • 批准号:
    10637032
  • 财政年份:
    2023
  • 资助金额:
    $ 87.61万
  • 项目类别:
Characterization of carbohydrate-binding proteins and their applications
碳水化合物结合蛋白的表征及其应用
  • 批准号:
    23K05034
  • 财政年份:
    2023
  • 资助金额:
    $ 87.61万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
NutriBoost: Ingredients for increased fiber & carbohydrate reduction in mainstream food.
NutriBoost:增加纤维的成分
  • 批准号:
    10067830
  • 财政年份:
    2023
  • 资助金额:
    $ 87.61万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了