Accelerated Real-Time Information Extraction System (ARIES)

加速实时信息提取系统(ARIES)

基本信息

  • 批准号:
    EP/J020540/1
  • 负责人:
  • 金额:
    $ 32.18万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2012
  • 资助国家:
    英国
  • 起止时间:
    2012 至 无数据
  • 项目状态:
    已结题

项目摘要

Technological advances in CMOS semiconductor technology paved the way for the digital revolution. As predicted by Moore, silicon integration capability has been doubling every 18 months over the past four decades, providing the foundation for low-cost computing and memory technology.The digitisation of information and communication technologies sparked a number of innovations revolutionising the way we compute and communicate. Ubiquitous high-bandwidth communication, enabled by WiFi and 3G/4G technologies, facilitates on-demand access to a vast amount of application and location specific information including multimedia and broadcast content, video and voice communications, email and SMS/MMS. Furthermore, it has enabled on-demand access to personalised storage and computing resources, providing the foundation for the development of cloud computing infrastructures and a wide range of online web-based services and applications. With the decreasing cost of communication and storage the Internet has also become the global communication infrastructure for a wide range of autonomous sensor technologies, referred to as the "Internet of things". Key application areas include monitoring/surveillance, smart grid, smart homes and smart cities. Monitoring internet traffic and mining meaningful information from both the online traffic and the stored information has emerged as essential for many critical applications and services. For example resource management, market intelligence, physical and cybercrime investigations and forensics, cyber space policing, situation awareness and the monitoring of malicious behaviour for criminal and terrorist intent. As the scale, diversity and distributed nature of current and emerging data assets increases and as data becomes ever more ubiquitous and critical to decision making, effective real-time mining of useful information becomes essential. Considering the exponential increase of internet traffic and stored data, traditional software based approaches have become inadequate and unsustainable. Performance gain achieved due to Moore's law does not keep up with the required computing bandwidth of current and near future generated data assets. Internet traffic bandwidth is doubling every 12 months while the emerging content diversity is significantly increasing mining complexity. As the enterprise becomes more data centric, with a significant increase in data assets within the public and private cloud, traditional scaling by increasing the number of computing resources can no longer be sustained due to cost and power dissipation.Most data mining algorithms are derived by the software community and are optimised for data structures for platforms based upon the Von-Neumann architecture. An effective solution now requires a paradigm shift in the way we process data and also how we extract meaningful information from a large amount of distributed, constantly changing data that is partially stored or in-transit.
CMOS半导体技术的技术进步为数字革命铺平了道路。正如摩尔所预测的那样,在过去的40年里,硅集成能力每18个月翻一番,为低成本计算和存储技术奠定了基础。信息和通信技术的数字化引发了一系列创新,彻底改变了我们的计算和通信方式。由WiFi和3G/4G技术实现的无处不在的高带宽通信促进了对大量应用和位置特定信息的按需访问,包括多媒体和广播内容、视频和语音通信、电子邮件和SMS/MMS。此外,它还实现了按需访问个性化存储和计算资源,为云计算基础设施和广泛的在线网络服务和应用程序的开发奠定了基础。随着通信和存储成本的降低,互联网也已成为广泛的自主传感器技术的全球通信基础设施,称为“物联网”。主要应用领域包括监控/监视、智能电网、智能家居和智能城市。监控互联网流量并从在线流量和存储的信息中挖掘有意义的信息已经成为许多关键应用程序和服务的关键。例如,资源管理、市场情报、实体犯罪和网络犯罪调查和取证、网络空间警务、态势感知以及监测出于犯罪和恐怖主义意图的恶意行为。随着当前和新兴数据资产的规模、多样性和分布式性质的增加,以及数据变得越来越普遍和对决策至关重要,有效实时挖掘有用信息变得至关重要。考虑到互联网流量和存储数据的指数增长,传统的基于软件的方法已经变得不充分和不可持续。由于摩尔定律而获得的性能增益跟不上当前和不久的将来生成的数据资产所需的计算带宽。互联网流量带宽每12个月翻一番,而新兴的内容多样性正在显着增加挖掘的复杂性。随着企业变得更加以数据为中心,公共云和私有云中的数据资产显著增加,传统的通过增加计算资源数量的扩展由于成本和功耗而不再可持续。大多数数据挖掘算法由软件社区开发,并针对基于冯诺依曼架构的平台的数据结构进行了优化。现在,一个有效的解决方案需要我们处理数据的方式以及我们如何从大量分布式的、不断变化的、部分存储或传输中的数据中提取有意义的信息的范式转变。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
International Symposium for ICS & SCADA Cyber Security Research
国际ICS研讨会
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rafiullah Khan
  • 通讯作者:
    Rafiullah Khan
Custom purpose regular expression processor architecture for network processing
用于网络处理的定制正则表达式处理器架构
  • DOI:
    10.1109/iscas.2012.6271507
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sezer S
  • 通讯作者:
    Sezer S
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sakir Sezer其他文献

MobiQ : A modular Android
MobiQ:模块化 Android
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Loughlin;Sakir Sezer;J. Moriarty;M. McCann;Helen McAneney;Leeanne O’Hara;M. A. Tully;Paul S. Ell;R. Miller;Geraldine Macdonald
  • 通讯作者:
    Geraldine Macdonald
Analysis of information leakage from encrypted Skype conversations
  • DOI:
    10.1007/s10207-010-0111-4
  • 发表时间:
    2010-07-24
  • 期刊:
  • 影响因子:
    3.200
  • 作者:
    Benoît Dupasquier;Stefan Burschka;Kieran McLaughlin;Sakir Sezer
  • 通讯作者:
    Sakir Sezer

Sakir Sezer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sakir Sezer', 18)}}的其他基金

Converged Approach towards Resilient Industrial control systems and Cyber Assurance (CAPRICA)
弹性工业控制系统和网络保障的融合方法 (CAPRICA)
  • 批准号:
    EP/M002837/1
  • 财政年份:
    2015
  • 资助金额:
    $ 32.18万
  • 项目类别:
    Research Grant
Network in Internet and Mobile Malicious Software (NIMBUS)
互联网和移动恶意软件中的网络 (NIMBUS)
  • 批准号:
    EP/K003445/1
  • 财政年份:
    2012
  • 资助金额:
    $ 32.18万
  • 项目类别:
    Research Grant

相似国自然基金

Immuno-Real Time PCR法精确定量血清MG7抗原及在早期胃癌预警中的价值
  • 批准号:
    30600737
  • 批准年份:
    2006
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
无色ReAl3(BO3)4(Re=Y,Lu)系列晶体紫外倍频性能与器件研究
  • 批准号:
    60608018
  • 批准年份:
    2006
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

IUCRC Phase II UMBC: Center for Accelerated Real time Analytics (CARTA)
IUCRC 第二阶段 UMBC:加速实时分析中心 (CARTA)
  • 批准号:
    2310844
  • 财政年份:
    2023
  • 资助金额:
    $ 32.18万
  • 项目类别:
    Continuing Grant
IUCRC Phase II University of Miami: Center for Accelerated Real Time Analytics (CARTA)
IUCRC 第二阶段迈阿密大学:加速实时分析中心 (CARTA)
  • 批准号:
    2310807
  • 财政年份:
    2023
  • 资助金额:
    $ 32.18万
  • 项目类别:
    Continuing Grant
Center: IUCRC Phase II Rutgers University: Center for Accelerated and Real Time Analytics (CARTA)
中心:IUCRC 第二阶段 罗格斯大学:加速和实时分析中心 (CARTA)
  • 批准号:
    2310966
  • 财政年份:
    2023
  • 资助金额:
    $ 32.18万
  • 项目类别:
    Continuing Grant
IUCRC Phase II Arizona State University: Center for Accelerated Real Time Analytics (CARTA)
IUCRC 第二阶段亚利桑那州立大学:加速实时分析中心 (CARTA)
  • 批准号:
    2311026
  • 财政年份:
    2023
  • 资助金额:
    $ 32.18万
  • 项目类别:
    Continuing Grant
IUCRC Phase I University of Miami: Center for Accelerated Real Time Analytics (CARTA)
IUCRC 第一阶段迈阿密大学:加速实时分析中心 (CARTA)
  • 批准号:
    2051800
  • 财政年份:
    2021
  • 资助金额:
    $ 32.18万
  • 项目类别:
    Continuing Grant
HARFSR: A Hardware-Accelerated Real-time Sound Field Rendering System for Large-scale Sound Environments
HARFSR:用于大规模声音环境的硬件加速实时声场渲染系统
  • 批准号:
    19K12092
  • 财政年份:
    2019
  • 资助金额:
    $ 32.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
RTML: Large: Real-Time Autonomic Decision Making on Sparsity-Aware Accelerated Hardware via Online Machine Learning and Approximation
RTML:大型:通过在线机器学习和近似在稀疏感知加速硬件上进行实时自主决策
  • 批准号:
    1937403
  • 财政年份:
    2019
  • 资助金额:
    $ 32.18万
  • 项目类别:
    Standard Grant
Phase I IUCRC University of Maryland Baltimore County: Center for Accelerated Real Time Analytics (CARTA)
第一阶段 IUCRC 马里兰大学巴尔的摩县:加速实时分析中心 (CARTA)
  • 批准号:
    1747724
  • 财政年份:
    2018
  • 资助金额:
    $ 32.18万
  • 项目类别:
    Continuing Grant
IUCRC Phase I Rutgers, Newark: Center for Accelerated Real Time Analytics (CARTA)
IUCRC 第一阶段 罗格斯大学,纽瓦克:加速实时分析中心 (CARTA)
  • 批准号:
    1747728
  • 财政年份:
    2018
  • 资助金额:
    $ 32.18万
  • 项目类别:
    Continuing Grant
Phase 1 IUCRC NC State University: Center for Accelerated Real Time Analytics (CARTA)
第一阶段 IUCRC 北卡罗来纳州立大学:加速实时分析中心 (CARTA)
  • 批准号:
    1747555
  • 财政年份:
    2018
  • 资助金额:
    $ 32.18万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了