Enhanced Acoustic Modelling for Auralisation using Hybrid Boundary Integral Methods

使用混合边界积分方法增强可听度声学建模

基本信息

  • 批准号:
    EP/J022071/1
  • 负责人:
  • 金额:
    $ 31.82万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2012
  • 资助国家:
    英国
  • 起止时间:
    2012 至 无数据
  • 项目状态:
    已结题

项目摘要

This project will develop a new acoustic modelling method, ideally suited for simulation of rooms and city squares, which will outperform existing methods either in its accuracy or computational efficiency. Developing such an algorithm is a particular concern for practitioners who use auralisation as a consultation tool in acoustic design of built spaces. In this process the data from the simulation model is rendered as sound by a loudspeaker system allowing a client or stakeholder, who is unlikely to be an expert in acoustics, to form a judgement on whether the acoustic design fits their needs. This process is of course only valid if the acoustic model delivers accurate prediction of how sound behaves in the space, and current commercial software does not always succeed in this task because the high-frequency geometric propagation assumption on which it is based breaks down at low frequencies and in spaces where diffraction effects are significant. Although alternate numerical methods exist they are typically limited to modelling only low frequencies since their computational cost becomes impractical as frequency or time-resolution is increased. In response to these shortcomings, this project will develop a new hybrid method which combines the best features of geometric methods and fully numerical boundary element method (BEM) solvers to provide a scheme that inherits desirable characteristics from both approaches; i.e. fully error controllable schemes, more accurate than geometric methods for low to mid range frequencies, but with reduced computational cost at higher frequencies compared to standard BEM, all achieved within a single unified framework. Such a model would potentially include all wave terms, geometric and diffracted, but lower energy reflections would only be included where necessary to achieve a given accuracy criterion (e.g. an SPL threshold or a function of the ear's perceptible difference limen) hence computational efficiency would be maximised.Introducing an element of interactivity to the auralisation process, where a user would be able to explore the space and/or make dynamic changes to the sources and building geometry or materials, would be desirable from a consultation-productivity perspective but place extremely high demands on the acoustic model. Not only must the model dynamically update to reflect the modifications made by the user, but the requirement for accuracy is even more pressing since any feature the client chooses to introduce must be accurately rendered, even if it has a strong acoustic effect (e.g. concave focussing surfaces, room resonances, unusual echo patterns), and there will be little or no opportunity for an expert to check that the sound is realistic. The new algorithm we propose will address these needs since, as well as having improved accuracy, it also has the desirable characteristic that only a small easily identified subset of the acoustic interaction data needs to be re-computed when a change in building geometry or source location occurs; incorporating support for modelling time variant and interactive scenarios would hence be relatively straightforward. Towards this goal the project will also develop a new auralisation orientated audio platform which will represent acoustic interactions by a network of digital filters and output sound direct to audio hardware, and the simulation algorithm will be geared towards outputting reduced acoustic models in this format. Pilot studies will investigate how interactivity might be supported, as dynamic modifications of scenario objects and corresponding filter network elements, and how standard lumped parameter sound insulation and stochastic reverberation models may be incorporated. The project will conclude with a work package dedicated to modelling some real-world scenarios which would cause difficulties for current acoustic modelling software.
该项目将开发一种新的声学建模方法,非常适合房间和城市广场的模拟,无论是在准确性还是计算效率方面,都将优于现有方法。开发这样的算法是一个特别关注的从业者谁使用可听化作为咨询工具,在声学设计的建成空间。在这个过程中,来自仿真模型的数据通过扬声器系统呈现为声音,允许客户或利益相关者(他们不太可能是声学专家)判断声学设计是否符合他们的需求。这个过程当然只有在声学模型能够准确预测声音在空间中的行为时才有效,而目前的商业软件并不总是能成功完成这项任务,因为它所基于的高频几何传播假设在低频和衍射效应显著的空间中被打破。虽然存在替代的数值方法,但它们通常仅限于对低频进行建模,因为随着频率或时间分辨率的增加,它们的计算成本变得不切实际。针对这些缺点,本项目将开发一种新的混合方法,它结合了几何方法和全数值边界元法求解器的最佳特点,以提供一种从两种方法中继承所需特点的方案;即完全误差可控的方案,对于低到中范围频率比几何方法更精确,但是与标准BEM相比,在更高频率下具有降低的计算成本,所有这些都在单个统一框架内实现。这样的模型可能包括所有的波项,几何和衍射,但只有在必要时才包括较低能量的反射,以达到给定的精度标准(例如,SPL阈值或耳朵的可感知差异阈值的函数),因此计算效率将被最大化。其中用户将能够探索空间和/或对源和建筑物几何形状或材料进行动态改变,从咨询生产力的角度来看是期望的,但是对声学模型提出了极高的要求。模型不仅必须动态更新以反映用户所做的修改,而且对准确性的要求更加紧迫,因为客户选择引入的任何功能都必须准确地呈现,即使它具有强烈的声学效果(例如凹聚焦表面,房间共振,不寻常的回声模式),并且专家几乎没有机会检查声音是否真实。我们提出的新算法将满足这些需求,因为,以及具有更高的精度,它也具有理想的特性,只有一个小的容易识别的子集的声学相互作用数据需要重新计算时,在建筑物的几何形状或源位置发生变化,将支持建模时变和交互式的情况下,因此将是相对简单的。为了实现这一目标,该项目还将开发一个新的面向可听化的音频平台,该平台将通过数字滤波器网络表示声学交互,并将声音直接输出到音频硬件,模拟算法将面向以这种格式输出简化的声学模型。试点研究将调查如何互动可能得到支持,作为动态修改的场景对象和相应的过滤器网络元素,以及如何标准的集总参数隔音和随机混响模型可能会被纳入。该项目将以一个工作包结束,该工作包专门用于模拟一些现实世界的场景,这些场景将给当前的声学建模软件带来困难。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Wave-Matching Boundary Integral Equation - An energy approach to Galerkin BEM for acoustic wave propagation problems
波匹配边界积分方程 - 针对声波传播问题的伽辽金边界元法的能量方法
  • DOI:
    10.1016/j.wavemoti.2018.07.003
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Hargreaves J
  • 通讯作者:
    Hargreaves J
Acoustic cross-energy measures and their applications
声学交叉能量测量及其应用
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hargreaves JA
  • 通讯作者:
    Hargreaves JA
An Energy Interpretation of the Kirchhoff-Helmholtz Boundary Integral Equation and its Application to Sound Field Synthesis
  • DOI:
    10.3813/aaa.918770
  • 发表时间:
    2014-09-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hargreaves, Jonathan A.;Lam, Yiu W.
  • 通讯作者:
    Lam, Yiu W.
Towards a full-bandwidth numerical acoustic model
迈向全带宽数值声学模型
  • DOI:
    10.1121/1.4800226
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hargreaves J
  • 通讯作者:
    Hargreaves J
A framework for auralization of boundary element method simulations including source and receiver directivity.
边界元方法模拟的可听化框架,包括源和接收器方向性。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yiu Lam其他文献

Yiu Lam的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yiu Lam', 18)}}的其他基金

Industrial CASE Account - Salford 2010
工业 CASE 帐户 - 索尔福德 2010
  • 批准号:
    EP/I501649/1
  • 财政年份:
    2010
  • 资助金额:
    $ 31.82万
  • 项目类别:
    Training Grant

相似国自然基金

对由不同共振单元或含人工结构固体板构建的声学超表面(acoustic metasurface)的研究
  • 批准号:
    11604307
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
Acoustic Cardiography在心力衰竭患者危险分层及预后评估中的应用研究
  • 批准号:
    81300244
  • 批准年份:
    2013
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Modelling of Resonant Acoustic Mixing Parameters
共振声混合参数的建模
  • 批准号:
    2889976
  • 财政年份:
    2023
  • 资助金额:
    $ 31.82万
  • 项目类别:
    Studentship
Distributed Acoustic Sensor System for Modelling Active Travel
用于建模主动行程的分布式声学传感器系统
  • 批准号:
    EP/X01262X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 31.82万
  • 项目类别:
    Research Grant
Automatic detection and modelling of acoustic markers of speech timing
语音计时声学标记的自动检测和建模
  • 批准号:
    DP230101184
  • 财政年份:
    2023
  • 资助金额:
    $ 31.82万
  • 项目类别:
    Discovery Projects
Towards precise focal activation of ultra-stable size isolated microbubbles in therapeutic focused ultrasound: Production, modelling and acoustic characterization
在治疗聚焦超声中实现超稳定尺寸孤立微泡的精确聚焦激活:生产、建模和声学表征
  • 批准号:
    568421-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 31.82万
  • 项目类别:
    Postdoctoral Fellowships
Scalable Room Acoustic Modelling (SCReAM)
可扩展的房间声学建模 (SCReAM)
  • 批准号:
    EP/V002554/1
  • 财政年份:
    2021
  • 资助金额:
    $ 31.82万
  • 项目类别:
    Research Grant
Acoustic and Elastic Wave Modelling
声学和弹性波建模
  • 批准号:
    2602531
  • 财政年份:
    2021
  • 资助金额:
    $ 31.82万
  • 项目类别:
    Studentship
Characterization and Modelling of the Electrode-Nerve Interface for Electro-Acoustic Stimulation in Cochlear Implant Users
用于人工耳蜗用户电声刺激的电极-神经接口的表征和建模
  • 批准号:
    396932747
  • 财政年份:
    2018
  • 资助金额:
    $ 31.82万
  • 项目类别:
    Research Grants
Ocean modelling capabilities for input into acoustic models for shallow water choke points
海洋建模功能,可输入浅水阻塞点的声学模型
  • 批准号:
    514588-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 31.82万
  • 项目类别:
    Engage Grants Program
Modelling of vibro-acoustic systems with polymorphic uncertainties and its application to tyre road noise
具有多态不确定性的振动声学系统建模及其在轮胎道路噪声中的应用
  • 批准号:
    312761868
  • 财政年份:
    2016
  • 资助金额:
    $ 31.82万
  • 项目类别:
    Priority Programmes
CFD Modelling of the acoustic response of sprays
喷雾声响应的 CFD 建模
  • 批准号:
    EP/M023893/1
  • 财政年份:
    2016
  • 资助金额:
    $ 31.82万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了