Robust and Sensitive Methods for Non-rigid and Partial 3D model Retrieval

用于非刚性和部分 3D 模型检索的稳健且灵敏的方法

基本信息

  • 批准号:
    EP/J02211X/1
  • 负责人:
  • 金额:
    $ 39.49万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2013
  • 资助国家:
    英国
  • 起止时间:
    2013 至 无数据
  • 项目状态:
    已结题

项目摘要

3D models have a broad range of applications in many different areas such as engineering, biology, chemistry, medicine, entertainment and cultural heritage. Many 3D models are available from the Internet and other sources, resulting in a problem of how to effectively and efficiently find required 3D models (i.e., 3D model retrieval). Current research on 3D model retrieval mainly focuses on global rigid 3D model retrieval, and algorithms for solving this problem are not effective for non-rigid and partial 3D model retrieval. Because many 3D models of interest are non-rigid (such as humans, and mechanisms), and because it is often important to consider just parts of a 3D model (e.g. find a model with a particular connector), finding an efficient way to retrieve non-rigid and partial 3D models is a pressing and challenging problem. This project intends to develop robust and sensitive algorithms for non-rigid and partial 3D model retrieval.A typical shape-based 3D model retrieval algorithm consists of three main steps: model preprocessing, feature/shape descriptor extraction, and feature/shape indexing and matching. This project will investigate all three steps and develop new non-rigid and partial 3D model retrieval algorithms based on novel techniques from other research areas. Set-membership estimation from control theory will be introduced into model preprocessing and feature/shape descriptor extraction. New machine learning methods, such as affinity propagation, manifold learning and ranking, will be explored for extracting features/shape descriptors, and for feature/shape indexing and matching. The N-gram model from natural language processing will be adapted to feature/shape indexing and matching. Other new techniques from image processing and computer vision will be investigated regarding their effectiveness for non-rigid and partial 3D model retrieval.This project will also consider potential applications of the newly developed techniques. The 3D model retrieval algorithms will be evaluated jointly with Delcam plc with a view to commercial exploitation. A practical non-rigid and partial 3D model search engine will be developed and deployed on the Internet for public use.
3D模型在工程、生物、化学、医学、娱乐和文化遗产等许多不同领域有着广泛的应用。许多3D模型可以从互联网和其他来源获得,导致如何有效且高效地找到所需的3D模型(即3D模型检索)的问题。目前3D模型检索的研究主要集中在全局刚性3D模型检索上,解决该问题的算法对于非刚性和部分3D模型检索并不有效。由于许多感兴趣的 3D 模型都是非刚性的(例如人体和机构),并且由于仅考虑 3D 模型的一部分(例如查找具有特定连接器的模型)通常很重要,因此找到一种有效的方法来检索非刚性和部分 3D 模型是一个紧迫且具有挑战性的问题。该项目旨在开发用于非刚性和部分 3D 模型检索的稳健且灵敏的算法。典型的基于形状的 3D 模型检索算法由三个主要步骤组成:模型预处理、特征/形状描述符提取以及特征/形状索引和匹配。该项目将研究所有三个步骤,并基于其他研究领域的新技术开发新的非刚性和部分 3D 模型检索算法。来自控制理论的集合成员估计将被引入模型预处理和特征/形状描述符提取中。将探索新的机器学习方法,例如亲和力传播、流形学习和排序,以提取特征/形状描述符以及特征/形状索引和匹配。来自自然语言处理的 N-gram 模型将适用于特征/形状索引和匹配。将研究图像处理和计算机视觉的其他新技术在非刚性和部分 3D 模型检索方面的有效性。该项目还将考虑新开发技术的潜在应用。 3D 模型检索算法将与 Delcam plc 联合评估,以期进行商业开发。将开发实用的非刚性和部分3D模型搜索引擎并将其部署在互联网上供公众使用。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Skeleton-based canonical forms for non-rigid 3D shape retrieval
  • DOI:
    10.1007/s41095-016-0045-5
  • 发表时间:
    2016-04
  • 期刊:
  • 影响因子:
    6.9
  • 作者:
    D. Pickup;Xianfang Sun;Paul L. Rosin;Ralph Robert Martin
  • 通讯作者:
    D. Pickup;Xianfang Sun;Paul L. Rosin;Ralph Robert Martin
Normal manipulation for bas-relief modeling
  • DOI:
    10.1016/j.gmod.2021.101099
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhongping Ji;Xianfang Sun;Yu-Wei Zhang;Weiyin Ma;Mingqiang Wei
  • 通讯作者:
    Zhongping Ji;Xianfang Sun;Yu-Wei Zhang;Weiyin Ma;Mingqiang Wei
Canonical Forms for Non-Rigid 3D Shape Retrieval
非刚性 3D 形状检索的规范形式
  • DOI:
    10.2312/3dor.20151063
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pickup D
  • 通讯作者:
    Pickup D
Non-rigid 3D Shape Retrieval
  • DOI:
    10.2312/3dor.20151064
  • 发表时间:
    2015-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Z. Lian;J. Zhang;S. Choi;H. ElNaghy;Jihad El-Sana;T. Furuya;Andrea Giachetti;R. Güler;L. Lai
  • 通讯作者:
    Z. Lian;J. Zhang;S. Choi;H. ElNaghy;Jihad El-Sana;T. Furuya;Andrea Giachetti;R. Güler;L. Lai
ReliefNet: Fast Bas-relief Generation from 3D Scenes
  • DOI:
    10.1016/j.cad.2020.102928
  • 发表时间:
    2021-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhongping Ji;Wei Feng;Xianfang Sun;Fei-wei Qin;Yigang Wang;Yu-Wei Zhang;Weiyin Ma
  • 通讯作者:
    Zhongping Ji;Wei Feng;Xianfang Sun;Fei-wei Qin;Yigang Wang;Yu-Wei Zhang;Weiyin Ma
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xianfang Sun其他文献

Reliability Analysis Using Deep Learning
使用深度学习进行可靠性分析
SHREC 2009 - Generic Shape Retrieval Contest
SHREC 2009 - 通用形状检索竞赛
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Godil;H. Dutagaci;C. B. Akgül;A. Axenopoulos;B. Bustos;M. Chaouch;P. Daras;T. Furuya;Sebastian Kreft;Z. Lian;T. Napoléon;A. Mademlis;Ryutarou Ohbuchi;Paul L. Rosin;B. Sankur;Tobias Schreck;Xianfang Sun;M. Tezuka;Anne Verroust;Michael Walter;Y. Yemez
  • 通讯作者:
    Y. Yemez
Image-driven unsupervised 3D model co-segmentation
图像驱动的无监督 3D 模型联合分割
  • DOI:
    10.1007/s00371-019-01679-6
  • 发表时间:
    2019-05
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Juncheng Liu;Paul L Rosin;Xianfang Sun;Jianguo Xiao;Zhouhui Lian
  • 通讯作者:
    Zhouhui Lian
Modelling hybrid acoustofluidic devices for enhancing Nano- and Micro-Particle manipulation in microfluidics
对混合声流装置进行建模,以增强微流控中的纳米和微米粒子操纵
  • DOI:
    10.1016/j.apacoust.2023.109258
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Hanlin Wang;Fan Yuan;Zhihua Xie;Chao Sun;Fangda Wu;R. Mikhaylov;Ming;Jian Yang;You Zhou;Dongfang Liang;Xianfang Sun;Zhenlin Wu;Zhiyong Yang;Xin Yang
  • 通讯作者:
    Xin Yang
Saliency guided local and global descriptors for effective action recognition
  • DOI:
    10.1007/s41095-016-0033-9
  • 发表时间:
    2016-01-29
  • 期刊:
  • 影响因子:
    18.300
  • 作者:
    Ashwan Abdulmunem;Yu-Kun Lai;Xianfang Sun
  • 通讯作者:
    Xianfang Sun

Xianfang Sun的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

A mixed-methods investigation of young and older adults' strategies during age-sensitive visual working memory: co-developing a novel strategy trainin
年轻人和老年人在年龄敏感的视觉工作记忆中的策略的混合方法研究:共同开发一种新的策略训练
  • 批准号:
    2887457
  • 财政年份:
    2023
  • 资助金额:
    $ 39.49万
  • 项目类别:
    Studentship
Investigation of new test methods for adenosine-sensitive atrioventricular block
腺苷敏感型房室传导阻滞新检测方法的探讨
  • 批准号:
    23K07566
  • 财政年份:
    2023
  • 资助金额:
    $ 39.49万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Novel MRI Acquisition and Analysis Methods for Sensitive Detection of Dementia Treatment Side Effects
用于灵敏检测痴呆症治疗副作用的新型 MRI 采集和分析方法
  • 批准号:
    2719591
  • 财政年份:
    2022
  • 资助金额:
    $ 39.49万
  • 项目类别:
    Studentship
Innovative ion mobility - mass spectrometry workflows for discovering veterinary drug metabolites in tissues and the creation of sensitive methods for their quantification.
创新的离子淌度 - 质谱工作流程,用于发现组织中的兽药代谢物并创建灵敏的定量方法。
  • 批准号:
    RGPIN-2021-03293
  • 财政年份:
    2022
  • 资助金额:
    $ 39.49万
  • 项目类别:
    Discovery Grants Program - Individual
Development of rapid and sensitive bioassay methods to contribute to actinide internal exposure medical response
开发快速、灵敏的生物测定方法,有助于锕系元素内照射医疗反应
  • 批准号:
    22K12384
  • 财政年份:
    2022
  • 资助金额:
    $ 39.49万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Innovative ion mobility - mass spectrometry workflows for discovering veterinary drug metabolites in tissues and the creation of sensitive methods for their quantification.
创新的离子淌度 - 质谱工作流程,用于发现组织中的兽药代谢物并创建灵敏的定量方法。
  • 批准号:
    RGPIN-2021-03293
  • 财政年份:
    2021
  • 资助金额:
    $ 39.49万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: CNS Core: Small: HARMONIA: New Methods for Colocating Multiple QoS-Sensitive Jobs
协作研究:CNS 核心:小型:HARMONIA:共置多个 QoS 敏感作业的新方法
  • 批准号:
    2124908
  • 财政年份:
    2021
  • 资助金额:
    $ 39.49万
  • 项目类别:
    Standard Grant
Novel Neuroimaging and Neuropsychological Methods Sensitive to Cerebral Disruption in Veterans with Mild Traumatic Brain Injury
对轻度创伤性脑损伤退伍军人的脑损伤敏感的新型神经影像学和神经心理学方法
  • 批准号:
    10248786
  • 财政年份:
    2021
  • 资助金额:
    $ 39.49万
  • 项目类别:
Novel Neuroimaging and Neuropsychological Methods Sensitive to Cerebral Disruption in Veterans with Mild Traumatic Brain Injury
对轻度创伤性脑损伤退伍军人的脑损伤敏感的新型神经影像学和神经心理学方法
  • 批准号:
    10731353
  • 财政年份:
    2021
  • 资助金额:
    $ 39.49万
  • 项目类别:
Collaborative Research: CNS Core: Small: HARMONIA: New Methods for Colocating Multiple QoS-Sensitive Jobs
协作研究:CNS 核心:小型:HARMONIA:共置多个 QoS 敏感作业的新方法
  • 批准号:
    2124897
  • 财政年份:
    2021
  • 资助金额:
    $ 39.49万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了