Overcoming Capacity and Energy Limits in Optical Communications

克服光通信中的容量和能量限制

基本信息

  • 批准号:
    EP/K003038/1
  • 负责人:
  • 金额:
    $ 120.9万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2012
  • 资助国家:
    英国
  • 起止时间:
    2012 至 无数据
  • 项目状态:
    已结题

项目摘要

The world's Internet infrastructure is of ever increasing importance to both the national and global economy, enabling ever more efficient international trade and a host of new business opportunities. As a result data traffic on the world's networks has steadily been growing at around 40% per year over the past decade and no respite in this trend is anticipated for the foreseeable future. However, it is becoming impractical to satisfy this increased demand through the obvious and traditional measures such as improving spectral efficiency and utilization, installing more optical fibres, and increasing the number or size of the data centres, since today's telecommunications infrastructure is already estimated to be responsible for about 2% of world carbon emission (more than the aviation industry!). Consequently further capacity scaling using the existing technology is likely to have a significant impact on the environment. Another key issue is that the heat dissipation in data centres has reached its limit per unit volume, which effectively means that if current technological platforms are used to upgrade capacity then this will require new strategies for thermal management, likely further increasing the power consumption, cost and complexity. Clearly such a situation is unsustainable in the longer term. Current networks are mostly limited - both in terms of capacity and energy efficiency - by the architectures/technologies used. These in turn have traditionally been driven by the philosophy of designing the network so as to minimize the usage of expensive and relatively unreliable optical components and exploiting the maturity of electronics - with its potential for cost reduction when mass produced - to do the majority of the signal routing, processing and transmission impairment mitigation. However, this approach - given the previously discussed energy scaling constraints - will not be sustainable moving forward, dictating a change in this approach. Specifically it will be necessary to increase the amount of optics in the network to reduce the burden placed upon the electronics. I strongly believe that the transition to more optically empowered systems is simply unavoidable. The aim of this proposal is to investigate the possibility of employing the array of new optical components and subsystems that I am currently researching (which includes Optical Comb generators, injection locked lasers and devices that amplify signals differently depending on their phase) into optical networks, in a manner that allows for scaling to larger data transmission capacities with a simultaneous reduction in power consumption and/or better thermal management characteristics. Today, there are several main concepts relevant to future optical communications, all of them relying on having higher quality optical signals (e.g., signal-to-noise ratio), or tight control of the coherence properties of optical signals carrying independent data streams (called 'superchannel' technologies). My current research deals with development of high purity (low noise) Optical Combs that allow for tight control of coherence - promising to give both the key parameters necessary. Within the Fellowship, I plan to implement this technology into the generation and reception part of optical links. Higher signal-to-noise ratio transmitters and lower-noise and higher speed demultiplexing of data at the detection side should allow for extended reach without the need for additional in-line amplification and allow the use of modulation formats carrying more information inside the same spectral bandwidth. Among other advantages, the energy-per-transmitted-bit can be reduced in both these cases. However, I will not limit my research to optical communications and will investigate other fields where the results might also be helpful - e.g., ultraprecise transfer of time and frequency. I will work in close collaboration with academic as well as non-academic partners.
世界互联网基础设施对国家和全球经济的重要性日益增加,使国际贸易更加高效,并提供了大量新的商业机会。因此,在过去十年中,全球网络上的数据流量以每年40%左右的速度稳步增长,而且在可预见的未来,这一趋势预计不会停止。然而,通过提高频谱效率和利用率、安装更多的光纤、增加数据中心的数量或规模等明显的传统措施来满足这一增长的需求是不切实际的,因为据估计,今天的电信基础设施的碳排放量已占世界碳排放量的2%左右(比航空业还多!)。因此,使用现有技术进一步扩展容量可能会对环境产生重大影响。另一个关键问题是,数据中心的单位体积散热已经达到极限,这实际上意味着,如果使用当前的技术平台来升级容量,那么就需要新的热管理策略,这可能会进一步增加功耗、成本和复杂性。显然,从长期来看,这种局面是不可持续的。当前的网络在容量和能源效率方面大多受到所使用的架构/技术的限制。反过来,这些传统上是由设计网络的理念驱动的,以便最大限度地减少昂贵且相对不可靠的光学元件的使用,并利用电子产品的成熟度-在大规模生产时具有降低成本的潜力-来完成大部分信号路由,处理和传输损害缓解。然而,考虑到之前讨论的能量缩放限制,这种方法将无法持续发展,因此必须改变这种方法。具体来说,有必要增加网络中光学器件的数量,以减轻电子器件的负担。我坚信,向更强大的光学系统的过渡是不可避免的。本提案的目的是研究将我目前正在研究的一系列新的光学元件和子系统(包括光学梳状发生器、注入锁定激光器和根据相位不同放大信号的设备)应用于光网络的可能性,以一种允许扩展到更大的数据传输容量的方式,同时降低功耗和/或更好的热管理特性。今天,有几个与未来光通信相关的主要概念,所有这些都依赖于具有更高质量的光信号(例如,信噪比),或严格控制携带独立数据流的光信号的相干特性(称为“超级信道”技术)。我目前的研究涉及高纯度(低噪声)光学梳的发展,允许严格控制相干性-承诺提供必要的关键参数。在奖学金中,我计划将这项技术应用于光链路的产生和接收部分。更高的信噪比发射机和更低的噪声和更快的检测侧数据解复用应该允许扩展范围,而不需要额外的在线放大,并允许使用在相同频谱带宽内携带更多信息的调制格式。除其他优点外,在这两种情况下,每传输比特的能量都可以降低。然而,我不会将我的研究局限于光通信,并将研究其他领域,其中的结果也可能有所帮助-例如,超精确的时间和频率传输。我将与学术界和非学术界的合作伙伴密切合作。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Wavelength Conversion by Injection Locking to an Optical Comb for Optical Frequency Transfer Applciation
通过注入锁定光梳进行波长转换,用于光频率传输应用
Tunable QAM Transmitter Based on Direct Modulation Laser
基于直接调制激光器的可调谐QAM发射机
  • DOI:
    10.1364/ofc.2014.w1j.3
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kakande J
  • 通讯作者:
    Kakande J
Cavity-induced phase noise suppression in a Fabry-Perot modulator-based optical frequency comb.
  • DOI:
    10.1364/ol.42.001536
  • 发表时间:
    2017-04
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Joonyoung Kim;D. Richardson;R. Slavík
  • 通讯作者:
    Joonyoung Kim;D. Richardson;R. Slavík
Optical feed-forward carrier recovery using semiconductor optical devices and low frequency electronics
使用半导体光学器件和低频电子器件的光学前馈载波恢复
NEAT-FT: The European Fiber Link Collaboration
NEAT-FT:欧洲光纤链路协作
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Radan Slavik其他文献

Radan Slavik的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Radan Slavik', 18)}}的其他基金

EVacuAted OptiCal Fibres for Ultimate UV-to-Infrared Light TransMission (VACUUM)
用于终极紫外到红外光传输(真空)的真空光纤
  • 批准号:
    EP/W037440/1
  • 财政年份:
    2023
  • 资助金额:
    $ 120.9万
  • 项目类别:
    Research Grant

相似海外基金

Enhancing research capacity at the Geological Survey of Estonia to accelerate the country's transition to green energy (EGT-TWINN)
增强爱沙尼亚地质调查局的研究能力,加速该国向绿色能源的转型 (EGT-TWINN)
  • 批准号:
    10039270
  • 财政年份:
    2023
  • 资助金额:
    $ 120.9万
  • 项目类别:
    EU-Funded
System-level Co-design and Control of Large Capacity Wave Energy Converters with Multiple PTOs
具有多个 PTO 的大容量波浪能转换器的系统级协同设计与控制
  • 批准号:
    EP/V040650/2
  • 财政年份:
    2023
  • 资助金额:
    $ 120.9万
  • 项目类别:
    Research Grant
Elucidation of the oxygen storage/release reaction mechanism of large-capacity oxygen storage materials and performance improvement for realizing energy-saving oxygen production
阐明大容量储氧材料储放氧反应机理及性能改进实现节能制氧
  • 批准号:
    23KJ0033
  • 财政年份:
    2023
  • 资助金额:
    $ 120.9万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development of new positive electrode materials for rechargeable zinc-ion intercalation batteries to overcome energy capacity and stability limitations
开发用于可充电锌离子嵌入电池的新型正极材料,以克服能量容量和稳定性限制
  • 批准号:
    556905-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 120.9万
  • 项目类别:
    Alliance Grants
Formation of WO3/W photoelectrodes with superior energy storage capacity by nanosecond-laser-induced modification
纳秒激光诱导修饰形成具有优异储能能力的WO3/W光电极
  • 批准号:
    22K04767
  • 财政年份:
    2022
  • 资助金额:
    $ 120.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Estimation Method of Accumulated Plastic Deformation Capacity with Charpy Absorbed Energy Considering Effects of Cyclic Loading and Plastic Constraint
考虑循环载荷和塑性约束影响的夏比吸收能累积塑性变形能力估算方法
  • 批准号:
    22K04424
  • 财政年份:
    2022
  • 资助金额:
    $ 120.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Habitat effects on stream productive capacity, energy flow, and adaptive tradeoffs among juvenile salmonids
栖息地对河流生产力、能量流和幼鲑鱼适应性权衡的影响
  • 批准号:
    RGPIN-2016-04250
  • 财政年份:
    2021
  • 资助金额:
    $ 120.9万
  • 项目类别:
    Discovery Grants Program - Individual
System-level Co-design and Control of Large Capacity Wave Energy Converters with Multiple PTOs
具有多个 PTO 的大容量波浪能转换器的系统级协同设计与控制
  • 批准号:
    EP/V040510/1
  • 财政年份:
    2021
  • 资助金额:
    $ 120.9万
  • 项目类别:
    Research Grant
Development of new positive electrode materials for rechargeable zinc-ion intercalation batteries to overcome energy capacity and stability limitations
开发用于可充电锌离子嵌入电池的新型正极材料,以克服能量容量和稳定性限制
  • 批准号:
    556905-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 120.9万
  • 项目类别:
    Alliance Grants
Characterizing capacity of controllable DERs to provide energy storage service to the power grid
表征可控分布式能源为电网提供储能服务的能力
  • 批准号:
    2122313
  • 财政年份:
    2021
  • 资助金额:
    $ 120.9万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了