Foundation and Reweighted Algorithms for Sparsest Points of Convex Sets with Application to Data Processing

凸集最稀疏点的基础和重加权算法及其在数据处理中的应用

基本信息

  • 批准号:
    EP/K00946X/1
  • 负责人:
  • 金额:
    $ 23.06万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2013
  • 资助国家:
    英国
  • 起止时间:
    2013 至 无数据
  • 项目状态:
    已结题

项目摘要

Over the past a few years, the mathematical model for seeking sparsest solutions/points in a well-structured convex set has had a significant impact across disciplines. It becomes so important that seeking the sparsity has become a common request and task in such fields as signal recovery and denoising, image reconstruction and inpainting, face recognition, statistical estimation, pattern identification, model selection, machine learning, financial engineering, to name but a few. This, however, remains an emerging new area awaiting for urgent and extensive scientific research inputs. The proposed project aims to make significant UK contributions in this field, via providing sophisticated computational methods and related theory. The outcome of this proposed research will directly benefit to both academic and engineering communities. Up to now, the NP-hard sparsity-seeking model has been investigated dominantly by convex approximation method, i.e., l1-method. While it successfully solves a wide range of sparsity-seeking problems, it might fail in many situations as well. Reweighted methods have been numerically demonstrated being able to outperform the l1-method in many situations. However, the theoretical analysis for the reweighted algorithm is very limited so far, and many fundamental questions associated this method remain open. It is therefore imperative to develop a rigorous theory and efficient design for reweighted algorithms that, at present, lie at the research frontier of both applied mathematics and engineering. In this project, we aim at conducting a comprehensive and systematic study of such a theory and design, and to fully or partially address some important (open) questions in this field, and to apply the developed theory and algorithms timely to data processing, especially those from signal and image processing and financial problems. With a multidisciplinary character, the proposed research involves substantial exchange of ideas between applied mathematics (computational optimization and numerical analysis), engineering (sparse data representation and processing), and computer science (algorithmic design and complexity). We aim to achieve four closely related objectives. Successful completion one of these goals will bring useful ideas to achieve the next. First, we aim to enhance the existing theory and methods by developing new and relaxed conditions that guarantee the success of both weighted and non-weighted methods for locating sparsest points in convex sets. Second, we aim at developing a generic algorithmic framework and convergence theory for the general model of sparsity-seeking problems, leading to a new frontier in computational optimization, and stimulating more potential, complex applications in industrial sectors. Computer programs for research purpose (and possibly for commercial purpose later) will be compiled as well. Our third objective is largely to benefit academic communities by deeply exploring and deterministically justifying the interplay between reweighted and non-weighted algorithms. So far, this important research has not carried out yet in this field. Moreover, we aim for the deep relationship between the efficiency of reweighted algorithms and the concave minimization problem, leading to a new research frontier between the global optimization, fast data processing, and computational complexity.
在过去的几年里,在结构良好的凸集中寻找稀疏解/点的数学模型在各个学科中都产生了重大影响。在信号恢复和去噪、图像重建和修复、人脸识别、统计估计、模式识别、模型选择、机器学习、金融工程等领域中,寻求稀疏性已经成为一项共同的要求和任务。然而,这仍然是一个正在出现的新领域,需要紧急和广泛的科学研究投入。拟议的项目旨在通过提供复杂的计算方法和相关理论,在这一领域做出重大贡献。这项研究的成果将直接有益于学术界和工程界。到目前为止,NP-hard稀疏搜索模型的研究主要采用凸近似方法,即,l1方法虽然它成功地解决了广泛的稀疏搜索问题,但它也可能在许多情况下失败。重新加权的方法已经被数值证明能够在许多情况下优于l1方法。然而,到目前为止,对重加权算法的理论分析是非常有限的,与此方法相关的许多基本问题仍然是开放的。因此,当务之急是制定一个严格的理论和有效的设计,目前,躺在应用数学和工程的研究前沿的重加权算法。本项目旨在对这一理论和设计进行全面、系统的研究,全面或部分地解决这一领域的一些重要问题,并将所发展的理论和算法及时应用于数据处理,特别是信号和图像处理以及金融问题。具有多学科性质,拟议的研究涉及应用数学(计算优化和数值分析),工程(稀疏数据表示和处理)和计算机科学(算法设计和复杂性)之间的大量思想交流。我们的目标是实现四个密切相关的目标。成功地完成其中一个目标将为下一个目标的实现带来有益的想法。首先,我们的目标是加强现有的理论和方法,通过开发新的和宽松的条件,保证成功的加权和非加权的方法定位稀疏点的凸集。其次,我们的目标是为稀疏搜索问题的一般模型开发一个通用算法框架和收敛理论,从而在计算优化方面开辟一个新的前沿,并刺激工业部门中更多潜在的复杂应用。此外,还将编制用于研究目的(以后可能用于商业目的)的计算机程序。我们的第三个目标是通过深入探索和确定性地证明重新加权和非加权算法之间的相互作用,使学术界受益。到目前为止,这一重要的研究还没有在这一领域进行。此外,我们的目标是重新加权算法的效率与凹最小化问题之间的深刻关系,从而在全局优化、快速数据处理和计算复杂性之间开辟新的研究前沿。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On norm compression inequalities for partitioned block tensors
  • DOI:
    10.1007/s10092-020-0356-x
  • 发表时间:
    2020-02
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Zhening Li;Yun-Bin Zhao
  • 通讯作者:
    Zhening Li;Yun-Bin Zhao
1-Bit compressive sensing: Reformulation and RRSP-based sign recovery theory
  • DOI:
    10.1007/s11425-016-5153-2
  • 发表时间:
    2014-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yun-Bin Zhao;Chunlei Xu
  • 通讯作者:
    Yun-Bin Zhao;Chunlei Xu
On the proximal Landweber Newton method for a class of nonsmooth convex problems
一类非光滑凸问题的近端Landweber Newton方法
Uniqueness Conditions for A Class of l 0 -Minimization Problems
一类 l 0 最小化问题的唯一性条件
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yunbin Zhao其他文献

Comparison of properties of tumor necrosis factor-α converting enzyme (TACE) and some matrix metalloproteases (MMPs) in catalytic domains
  • DOI:
    10.1007/s11596-006-0601-9
  • 发表时间:
    2006-12-01
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Yunbin Zhao;Wenfang Feng;Yuzhen Yang;Lunjiang Ling;Runsheng Chen
  • 通讯作者:
    Runsheng Chen
Equivalence and strong equivalence between the sparsest and least l1-norm nonnegative solutions of linear systems and their applications
线性系统最稀疏和最小l1范数非负解的等价性和强等价性及其应用
Half adder and half subtractor logic gates based on nicking enzymes
基于切口酶的半加法器和半减法器逻辑门
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Yunbin Zhao;Yuan Liu;Xuedong Zheng;Bin Wang;Hui Lv;Shihua Zhou;Qiang Zhang;Xiaopeng Wei
  • 通讯作者:
    Xiaopeng Wei

Yunbin Zhao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Iteratively reweighted cluster analysis: Statistical methodolgy for data condensation and pattern extraction in the absence of a predefined response variable
迭代重新加权聚类分析:在没有预定义响应变量的情况下进行数据压缩和模式提取的统计方法
  • 批准号:
    304770-2004
  • 财政年份:
    2007
  • 资助金额:
    $ 23.06万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Iteratively reweighted cluster analysis: Statistical methodolgy for data condensation and pattern extraction in the absence of a predefined response variable
迭代重新加权聚类分析:在没有预定义响应变量的情况下进行数据压缩和模式提取的统计方法
  • 批准号:
    304770-2004
  • 财政年份:
    2006
  • 资助金额:
    $ 23.06万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Iteratively reweighted cluster analysis: Statistical methodolgy for data condensation and pattern extraction in the absence of a predefined response variable
迭代重新加权聚类分析:在没有预定义响应变量的情况下进行数据压缩和模式提取的统计方法
  • 批准号:
    304770-2004
  • 财政年份:
    2004
  • 资助金额:
    $ 23.06万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Iterative Reweighted Least Squares Design of Digital Filters
数字滤波器的迭代重加权最小二乘设计
  • 批准号:
    9316588
  • 财政年份:
    1994
  • 资助金额:
    $ 23.06万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了