Signal Processing Solutions for the Networked Battlespace

网络战场信号处理解决方案

基本信息

  • 批准号:
    EP/K014307/2
  • 负责人:
  • 金额:
    $ 274.04万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2015
  • 资助国家:
    英国
  • 起止时间:
    2015 至 无数据
  • 项目状态:
    已结题

项目摘要

The nature of the modern battlefield is changing dramatically. Electronic communication is allowing unprecedented interchange of data and information between platforms. Advances in electronics are allowing the possibility of low cost networked unattended sensors. Intelligent and robust processing of the very large amount of multi-sensor data acquired from various networked communications and weapons platforms is, therefore, crucial to retain military advantage and mitigate smart adversaries who present multiple threats within an anarchic and extended operating area (battlespace). Hence we have composed a unique consortium of academic experts from Loughborough, Surrey, Strathclyde and Cardiff universities together with six industrial project partners QinetiQ, Selex-Galileo, Thales, Texas Instruments, PrismTech & Steepest Ascent, to develop transformational new signal processing solutions to the benefit of Dstl, the MoD, and the UK in general. To achieve this goal we are proposing a five-year integrated programme of work composed of the following five interlinked work packages: (1) Automated statistical anomaly detection and classification in high dimensions for the networked battlespace, in which we aim not only to detect anomaly, but also to identify its nature and nuance, when acquired in a high dimensional complex network environment. Data quality and ambiguity measures will be used to ensure the models of normality are not corrupted by unreliable and ambiguous data; (2) Handling uncertainty and incorporating domain knowledge, within which we aim to exploit the world model of the networked battlespace to improve performance and confidence, and to reduce uncertainty to an unprecedented level. Examples for such information are digital maps about terrain and layout of the field, geometric relations between platforms and operational conditions such as weather; (3) Signal separation and broadband distributed beamforming, in which we target at designing low-complexity robust algorithms for underdetermined and convolutive source separation, and broadband distributed beamforming, facilitated by low-rank and sparse representations, and their fast implementations; (4) Multi-input and multi-output (MIMO) and distributed sensing, within which we intend to create novel paradigms for distributed MIMO radar systems operating in the cluttered networked battlespace; and (5) Low complexity algorithms and efficient implementation, in which with Texas Instruments, PrismTech & Steepest Ascent we aim to formulate and realize novel implementation strategies for a range of complex signal processing algorithms in a networked environment. These interlinked workpackages have been very carefully designed to marry up with the research themes and challenges identified by Dstl & the EPSRC and we have clear strategies for attaining datasets, performing evaluation, and communicating findings.We have designed a carefully structured consortium management team including an overarching steering group with renowned external independent experts with expertise covering the scope of the work programme. The operation of the consortium will be the responsibility of the Consortium Director and the Consortium Management Team. A key component of our consortium management is to encourage research staff and students employed to be periodically seconded to the labs of other collaborators within the consortium to benefit from complementary knowledge and skills at partner universities and industry; gain access to privileged datasets and/or equipment; or share resources & provide critical mass when addressing a particular Dstl challenge.The management structure and coordination measures have been designed for the consortium to have the capacity to assume the role of lead consortium, if required, working with Dstl & EPSRC to establish a community of practice in signal and data processing, and to ensure the UK has world leading capability in the area.
现代战场的性质正在发生巨大变化。电子通信使平台之间前所未有的数据和信息交换成为可能。电子技术的进步使低成本联网无人值守传感器成为可能。因此,对从各种网络通信和武器平台获取的大量多传感器数据进行智能和稳健的处理,对于保持军事优势和减轻在无政府状态和扩展的作战区域(战场空间)内呈现多重威胁的智能对手至关重要。因此,我们组成了一个独特的学术专家联盟,来自拉夫堡、萨里、斯特拉斯克德和卡迪夫大学,以及六个工业项目合作伙伴QinetiQ、Selex-Galileo、泰雷兹、德州仪器、PrismTech和steep Ascent,以开发变革性的新信号处理解决方案,为Dstl、国防部和整个英国带来好处。为了实现这一目标,我们提出了一个由以下五个相互关联的工作包组成的五年综合工作计划:(1)网络化战场空间的高维自动统计异常检测和分类,我们的目标不仅是检测异常,而且是识别其性质和细微差别,当在高维复杂网络环境中获得时。将使用数据质量和模糊度量来确保常态性模型不被不可靠和模糊的数据破坏;(2)处理不确定性并结合领域知识,我们的目标是利用网络化战斗空间的世界模型来提高性能和信心,并将不确定性降低到前所未有的水平。此类信息的例子有关于地形和油田布局的数字地图、平台之间的几何关系和天气等操作条件;(3)信号分离和宽带分布式波束形成,其中我们的目标是设计低复杂度的鲁棒算法,用于欠确定和卷积源分离,以及基于低秩和稀疏表示的宽带分布式波束形成,以及它们的快速实现;(4)多输入多输出(MIMO)和分布式传感,其中我们打算为分布式MIMO雷达系统在混乱的网络战场空间中运行创建新的范例;(5)低复杂度算法和高效实现,其中我们与德州仪器,PrismTech和steep Ascent合作,旨在制定和实现网络环境中一系列复杂信号处理算法的新颖实现策略。这些相互关联的工作包经过精心设计,与Dstl和EPSRC确定的研究主题和挑战相结合,我们有明确的策略来获取数据集,执行评估和交流发现。我们设计了一个结构严谨的财团管理团队,包括一个由知名外部独立专家组成的总体指导小组,这些专家的专业知识涵盖了工作计划的范围。联合体的运营将由联合体董事和联合体管理团队负责。我们联盟管理的一个关键组成部分是鼓励被聘用的研究人员和学生定期借调到联盟内其他合作者的实验室,以便从合作大学和行业的互补知识和技能中受益;获得访问特权数据集和/或设备的权限;或共享资源,并在解决特定的Dstl挑战时提供临界质量。管理结构和协调措施的设计是为了使联合体有能力承担牵头联合体的角色,如果需要,与Dstl和EPSRC合作,建立一个信号和数据处理的实践社区,并确保英国在该领域拥有世界领先的能力。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
FPGA implementation of a cyclostationary detector for OFDM signals
OFDM 信号循环平稳检测器的 FPGA 实现
  • DOI:
    10.1109/eusipco.2016.7760328
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Allan D
  • 通讯作者:
    Allan D
Adding contextual information to Intrusion Detection Systems using Fuzzy Cognitive Maps
使用模糊认知图向入侵检测系统添加上下文信息
  • DOI:
    10.1109/cogsima.2016.7497807
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aparicio-Navarro F
  • 通讯作者:
    Aparicio-Navarro F
Using the pattern-of-life in networks to improve the effectiveness of intrusion detection systems
利用网络中的生命模式提高入侵检测系统的有效性
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aparicio-Navarro FJ
  • 通讯作者:
    Aparicio-Navarro FJ
Multi-Stage Attack Detection Using Contextual Information
使用上下文信息的多阶段攻击检测
  • DOI:
    10.1109/milcom.2018.8599708
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aparicio-Navarro F
  • 通讯作者:
    Aparicio-Navarro F
Polynomial Matrix Formulation-Based Capon Beamformer
基于多项式矩阵公式的 Capon 波束形成器
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alzin A
  • 通讯作者:
    Alzin A
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jonathon Chambers其他文献

Reconfigurable Intelligent Surface-Assisted B5G/6G Wireless Communications: Challenges, Solution and Future Opportunities
  • DOI:
    10.1109/mcom.002.2200047
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
  • 作者:
    Zhen Chen;Gaojie Chen;Jie Tang;Shun Zhang;Daniel K. C. So;Octavia A. Dobre;Kai-Kit Wong;Jonathon Chambers
  • 通讯作者:
    Jonathon Chambers
A Sliding Window Variational Outlier-Robust Kalman Filter based on Student's t Noise Modelling
Omega‐3 fatty acids (fish oils) and prostate cancer: is there any evidence of a link and how should we advise our patients?
Omega-3 脂肪酸(鱼油)与前列腺癌:是否有任何证据表明存在关联?我们应如何为患者提供建议?
  • DOI:
    10.1111/ans.12792
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Jonathon Chambers;Jon‐Paul Meyer
  • 通讯作者:
    Jon‐Paul Meyer
A novel adaptive Kalman filter with inaccurate process and measurement noise convariance matrices
一种新型自适应卡尔曼滤波器,具有不准确的处理和测量噪声协方差矩阵
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yulong Huang;Yonggang Zhang;Zhemin Wu;Ning Li;Jonathon Chambers
  • 通讯作者:
    Jonathon Chambers
Synchronization control of cyber–physical systems with time-varying dynamics under denial-of-service attacks
  • DOI:
    10.1016/j.jfranklin.2024.107243
  • 发表时间:
    2024-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Daotong Zhang;Peng Shi;Jonathon Chambers
  • 通讯作者:
    Jonathon Chambers

Jonathon Chambers的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jonathon Chambers', 18)}}的其他基金

Communications Signal Processing Based Solutions for Massive Machine-to-Machine Networks (M3NETs)
基于通信信号处理的大规模机器对机器网络 (M3NET) 解决方案
  • 批准号:
    EP/R006377/1
  • 财政年份:
    2018
  • 资助金额:
    $ 274.04万
  • 项目类别:
    Research Grant
Signal Processing Solutions for the Networked Battlespace
网络战场信号处理解决方案
  • 批准号:
    EP/K014307/1
  • 财政年份:
    2013
  • 资助金额:
    $ 274.04万
  • 项目类别:
    Research Grant
Audio and Video Based Speech Separation for Multiple Moving Sources Within a Room Environment
针对房间环境内多个移动源的基于音频和视频的语音分离
  • 批准号:
    EP/H049665/1
  • 财政年份:
    2010
  • 资助金额:
    $ 274.04万
  • 项目类别:
    Research Grant
Novel Communications Signal Processing Techs. for Transmission Over MIMO Frequency Selective Wireless Channels Using Polynomial Matrix Decompositions
新颖的通信信号处理技术。
  • 批准号:
    EP/F065477/1
  • 财政年份:
    2008
  • 资助金额:
    $ 274.04万
  • 项目类别:
    Research Grant
Multi-Modal Blind Source Separation Algorithms
多模态盲源分离算法
  • 批准号:
    EP/C535308/2
  • 财政年份:
    2008
  • 资助金额:
    $ 274.04万
  • 项目类别:
    Research Grant

相似国自然基金

Sirt1通过调控Gli3 processing维持SHH信号促进髓母细胞瘤的发展及机制研究
  • 批准号:
    82373900
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
靶向Gli3 processing调控Shh信号通路的新型抑制剂治疗儿童髓母细胞瘤及相关作用机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

A Study on Exact Optimal Solutions for Subgroup Identification Based on Discrete Structure Processing
基于离散结构处理的子群辨识精确最优解研究
  • 批准号:
    23K11023
  • 财政年份:
    2023
  • 资助金额:
    $ 274.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Exploring Solutions for Near Data Processing in a Serverless Cloud Environment
探索无服务器云环境中的近数据处理解决方案
  • 批准号:
    2784619
  • 财政年份:
    2023
  • 资助金额:
    $ 274.04万
  • 项目类别:
    Studentship
Understanding the Machinability of Titanium Alloy Components From a Range of Processing Routes to Inform Tooling Solutions for Next Generation Closed
从一系列加工路线了解钛合金部件的机械加工性,为下一代刀具解决方案提供信息 Closed
  • 批准号:
    2879613
  • 财政年份:
    2023
  • 资助金额:
    $ 274.04万
  • 项目类别:
    Studentship
Arsenic and antimony immobilization from mineral processing solutions and waste waters
矿物加工溶液和废水中砷和锑的固定化
  • 批准号:
    RGPIN-2015-05718
  • 财政年份:
    2021
  • 资助金额:
    $ 274.04万
  • 项目类别:
    Discovery Grants Program - Individual
GOALI: Structure-Property-Processing Relationships of Concentrated Surfactant Solutions
目标:浓缩表面活性剂溶液的结构-性能-加工关系
  • 批准号:
    2112956
  • 财政年份:
    2021
  • 资助金额:
    $ 274.04万
  • 项目类别:
    Standard Grant
BioFactory - Demonstrating the feasibility of a commercially viable micro-AD solutions for manure processing in small UK dairy farms
BioFactory - 展示商业上可行的微型 AD 解决方案用于英国小型奶牛场粪便处理的可行性
  • 批准号:
    10002935
  • 财政年份:
    2021
  • 资助金额:
    $ 274.04万
  • 项目类别:
    Collaborative R&D
Intelligent solutions for atypical auditory processing in children with Neuro-development disorders
针对神经发育障碍儿童非典型听觉处理的智能解决方案
  • 批准号:
    564336-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 274.04万
  • 项目类别:
    University Undergraduate Student Research Awards
Arsenic and antimony immobilization from mineral processing solutions and waste waters
矿物加工溶液和废水中砷和锑的固定化
  • 批准号:
    RGPIN-2015-05718
  • 财政年份:
    2020
  • 资助金额:
    $ 274.04万
  • 项目类别:
    Discovery Grants Program - Individual
Arsenic and antimony immobilization from mineral processing solutions and waste waters
矿物加工溶液和废水中砷和锑的固定化
  • 批准号:
    RGPIN-2015-05718
  • 财政年份:
    2019
  • 资助金额:
    $ 274.04万
  • 项目类别:
    Discovery Grants Program - Individual
Communications Signal Processing Based Solutions for Massive Machine-to-Machine Networks (M3NETs)
基于通信信号处理的大规模机器对机器网络 (M3NET) 解决方案
  • 批准号:
    EP/R006377/1
  • 财政年份:
    2018
  • 资助金额:
    $ 274.04万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了