Ionic Liquid Biorefining of Lignocellulose to Sustainable Polymers

木质纤维素离子液体生物精炼成可持续聚合物

基本信息

  • 批准号:
    EP/K014676/1
  • 负责人:
  • 金额:
    $ 321.68万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2013
  • 资助国家:
    英国
  • 起止时间:
    2013 至 无数据
  • 项目状态:
    已结题

项目摘要

We currently make more than just fuel from petroleum refining. Many of the plastics, solvents and other products that are used in everyday life are derived from these non-renewable resources. Our research programme aims to replace many of the common materials used as plastics with alternatives created from plants. This will enable us to tie together the UK's desire to move to non-petroleum fuel sources (e.g. biofuels) with our ability to produce renewable polymers and related products.Plant cell walls are made up of two main components: carbohydrate polymers (long chains of sugars) and lignin, which is the glue holding plants together. We will first develop methods of separating these two components using sustainable solvents called ionic liquids. Ionic liquids are salts which are liquids at room temperature, enabling a variety of chemical transformations to be carried out under consitions not normally available to traditional organic solvents. These ionic liquids also reduce pollution as they have no vapours and can be made from non-toxic, non-petroleum based resources.We will take the isolated carbohydrate polymers and break them down into simple sugars using enzymes and then further convert those sugars into building blocks for plastics using a variety of novel catalytic materials specifically designed for this process. The lignin stream will also be broken down and rebuilt into new plastics that can replace common materials. All of these renewable polymers will be used in a wide range of consumer products, including packaging materials, plastic containers and construction materials. The chemical feedstocks that we are creating will be flexible (used for chemical, material and fuel synthesis), safe (these feedstocks are predominantly non-toxic) and sustainable (most of the developed products are biodegradable). This will help reduce the overall environmental impact of the material economy in the UK. The chemistry that we will use focusses on creating highly energy efficient and low-cost ways of making these materials without producing large amounts of waste. We are committed to only developing future manufacturing routes that are benign to the environment in which we all live. In addition, natural material sources often have properties that are superior to those created using artificial means. We plan to exploit these advantages of natural resources in order to produce both replacements for current products and new products with improved performance. This will make our synthetic routes both environmentally responsible and economically advantageous. The UK has an opportunity to take an international lead in this area due to the accumulation of expertise within this country.The overall goal of this project is to develop sustainable manufacturing routes that will stimulate new UK businesses and environmentally responsible means of making common, high value materials. We will bring together scientific experts in designing processes, manufacturing plastics, growing raw biomass resources and developing new chemistries. The flexibility of resources is vital to the success of this endeavour, as no single plant biomass can be used for manufacturing on a year-round basis. Together with experienced leaders of responsible manufacturing industries, we will develop new ways of making everyday materials in a sustainable and economically beneficial way.The result of this research will be a fundamental philosophical shift to our material, chemical, and energy economy. The technologies proposed in this work will help break our dependence on rapidly depleting fossil resources and enable us to become both sustainable and self-sufficient. This will result in greater security, less pollution, and a much more reliable and responsible UK economy.
我们现在不仅仅是从石油提炼中获得燃料。日常生活中使用的许多塑料、溶剂和其他产品都来自这些不可再生资源。我们的研究计划旨在用植物制造的替代品取代许多常用的塑料材料。这将使我们能够将英国转向非石油燃料来源(例如生物燃料)的愿望与我们生产可再生聚合物和相关产品的能力结合起来。植物细胞壁由两种主要成分组成:碳水化合物聚合物(长链糖)和木质素,木质素是将植物粘在一起的粘合剂。我们将首先开发分离这两种成分的方法,使用称为离子液体的可持续溶剂。离子液体是一种盐,在室温下是液体,可以在传统有机溶剂通常无法达到的条件下进行各种化学转化。这些离子液体也减少了污染,因为它们没有蒸汽,可以由无毒的、非石油资源制成。我们将使用酶将分离的碳水化合物聚合物分解成单糖,然后使用专门为该过程设计的各种新型催化材料将这些糖进一步转化为塑料的构建块。木质素流也将被分解并重建成可以取代普通材料的新塑料。所有这些可再生聚合物将广泛用于各种消费品,包括包装材料、塑料容器和建筑材料。我们正在创造的化学原料将是灵活的(用于化学、材料和燃料合成)、安全的(这些原料主要是无毒的)和可持续的(大多数开发的产品是可生物降解的)。这将有助于减少英国物质经济对环境的整体影响。我们将使用的化学方法侧重于创造高能效和低成本的方法来制造这些材料,而不会产生大量废物。我们致力于只开发对我们生活的环境无害的未来生产路线。此外,天然材料来源通常具有优于使用人工手段创造的材料的特性。我们计划利用这些自然资源的优势,以生产现有产品的替代品和性能更好的新产品。这将使我们的合成路线既环保又经济。由于国内专业知识的积累,英国有机会在这一领域处于国际领先地位。该项目的总体目标是开发可持续的制造路线,这将刺激新的英国企业和对环境负责的方式,制造常见的高价值材料。我们将汇集设计工艺、制造塑料、种植原料生物质资源和开发新化学品方面的科学专家。资源的灵活性对这一努力的成功至关重要,因为没有一种植物生物量可以全年用于制造。与经验丰富的负责任的制造业领导者一起,我们将开发以可持续和经济效益的方式制造日常材料的新方法。这项研究的结果将对我们的材料、化学和能源经济产生根本性的哲学转变。这项工作中提出的技术将有助于打破我们对快速消耗的化石资源的依赖,使我们能够实现可持续和自给自足。这将带来更大的安全,更少的污染,以及一个更加可靠和负责任的英国经济。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Solid base catalysed 5-HMF oxidation to 2,5-FDCA over Au/hydrotalcites: fact or fiction?
  • DOI:
    10.1039/c5sc00854a
  • 发表时间:
    2015-08-01
  • 期刊:
  • 影响因子:
    8.4
  • 作者:
    Ardemani L;Cibin G;Dent AJ;Isaacs MA;Kyriakou G;Lee AF;Parlett CMA;Parry SA;Wilson K
  • 通讯作者:
    Wilson K
Conversion technologies: general discussion.
转换技术:一般性讨论。
  • DOI:
    10.1039/c7fd90049j
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Argyropoulos D
  • 通讯作者:
    Argyropoulos D
Structural changes in lignins isolated using an acidic ionic liquid water mixture
  • DOI:
    10.1039/c5gc01314c
  • 发表时间:
    2015-01-01
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Brandt, Agnieszka;Chen, Long;Hallett, Jason P.
  • 通讯作者:
    Hallett, Jason P.
An economically viable ionic liquid for the fractionation of lignocellulosic biomass
  • DOI:
    10.1039/c7gc00705a
  • 发表时间:
    2017-07-07
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Brandt-Talbot, Agnieszka;Gschwend, Florence J. V.;Hallett, Jason P.
  • 通讯作者:
    Hallett, Jason P.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Welton其他文献

Comparison of MRI head motion indicators in 40,969 subjects informs neuroimaging study design
  • DOI:
    10.1038/s41598-024-79827-9
  • 发表时间:
    2024-11-27
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Thomas Wei Jun Teo;Seyed Ehsan Saffari;Ling Ling Chan;Thomas Welton
  • 通讯作者:
    Thomas Welton
Diffusion MRI as a complementary assessment to cognition, emotion, and motor dysfunction after sports-related concussion: a systematic review and critical appraisal of the literature
  • DOI:
    10.1007/s11682-020-00336-0
  • 发表时间:
    2020-07-27
  • 期刊:
  • 影响因子:
    2.400
  • 作者:
    Sarah C. Hellewell;Thomas Welton;Alan J. Pearce;Jerome J. Maller;Stuart M. Grieve
  • 通讯作者:
    Stuart M. Grieve
A brain–computer interface for the Dasher alternative text entry system
  • DOI:
    10.1007/s10209-014-0375-y
  • 发表时间:
    2014-09-23
  • 期刊:
  • 影响因子:
    2.700
  • 作者:
    Thomas Welton;David J. Brown;Lindsay Evett;Nasser Sherkat
  • 通讯作者:
    Nasser Sherkat

Thomas Welton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Welton', 18)}}的其他基金

Exploiting microbial cell factories for manufacturing biodegradable film packaging from recalcitrant waste stream
利用微生物细胞工厂从顽固废物流中制造可生物降解的薄膜包装
  • 批准号:
    EP/X024040/1
  • 财政年份:
    2023
  • 资助金额:
    $ 321.68万
  • 项目类别:
    Research Grant
Core capability for Chemistry Research
化学研究核心能力
  • 批准号:
    EP/K039946/1
  • 财政年份:
    2013
  • 资助金额:
    $ 321.68万
  • 项目类别:
    Research Grant

相似国自然基金

研究和探索一维范德华材料中的Luttinger liquid物理和摩尔超晶格物理
  • 批准号:
    12174335
  • 批准年份:
    2021
  • 资助金额:
    62 万元
  • 项目类别:
    面上项目

相似海外基金

Design and Analysis of Structure Preserving Discretizations to Simulate Pattern Formation in Liquid Crystals and Ferrofluids
模拟液晶和铁磁流体中图案形成的结构保持离散化的设计和分析
  • 批准号:
    2409989
  • 财政年份:
    2024
  • 资助金额:
    $ 321.68万
  • 项目类别:
    Standard Grant
Collaborative Research: Sloshing liquid decontamination of compliant surfaces
合作研究:顺应表面的晃动液体净化
  • 批准号:
    2346686
  • 财政年份:
    2024
  • 资助金额:
    $ 321.68万
  • 项目类别:
    Standard Grant
Collaborative Research: Sloshing liquid decontamination of compliant surfaces
合作研究:顺应表面的晃动液体净化
  • 批准号:
    2346687
  • 财政年份:
    2024
  • 资助金额:
    $ 321.68万
  • 项目类别:
    Standard Grant
Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
  • 批准号:
    2344489
  • 财政年份:
    2024
  • 资助金额:
    $ 321.68万
  • 项目类别:
    Standard Grant
CAREER: Emergence of in-liquid structures in metallic alloys by nucleation and growth
职业:通过成核和生长在金属合金中出现液态结构
  • 批准号:
    2333630
  • 财政年份:
    2024
  • 资助金额:
    $ 321.68万
  • 项目类别:
    Continuing Grant
SBIR Phase I: High-Efficiency Liquid Desiccant Regenerator for Desiccant Enhanced Evaporative Air Conditioning
SBIR 第一阶段:用于干燥剂增强蒸发空调的高效液体干燥剂再生器
  • 批准号:
    2335500
  • 财政年份:
    2024
  • 资助金额:
    $ 321.68万
  • 项目类别:
    Standard Grant
Collaborative Research: Liquid Crystal-Templated Chemical Vapor Polymerization of Complex Nanofiber Networks
合作研究:复杂纳米纤维网络的液晶模板化学气相聚合
  • 批准号:
    2322900
  • 财政年份:
    2024
  • 资助金额:
    $ 321.68万
  • 项目类别:
    Standard Grant
Investigating liquid-like mineral phases in crowded media
研究拥挤介质中的液态矿物相
  • 批准号:
    EP/Y022653/1
  • 财政年份:
    2024
  • 资助金额:
    $ 321.68万
  • 项目类别:
    Research Grant
Delivery of liquid Hydrogen for Various Environment at High Rate
为各种环境高速输送液氢
  • 批准号:
    10110515
  • 财政年份:
    2024
  • 资助金额:
    $ 321.68万
  • 项目类别:
    EU-Funded
Sustainable Responsive Hybrid Ionic Liquid-Polymer Gel Electrolyte Materials
可持续响应杂化离子液体-聚合物凝胶电解质材料
  • 批准号:
    EP/Y005309/1
  • 财政年份:
    2024
  • 资助金额:
    $ 321.68万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了