Uncertainty quantification for the linking of spatio-temporal output of computer model hierarchies and the real world
计算机模型层次结构的时空输出与现实世界联系的不确定性量化
基本信息
- 批准号:EP/K019112/1
- 负责人:
- 金额:$ 27.96万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2013
- 资助国家:英国
- 起止时间:2013 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Quantification of uncertainty introduced by using computer models to study complex physical systems is a fundamental problem for modern science. Though a statistical methodology exists to perform the uncertainty quantification (UQ), the technology is not yet at the level required by high-end users with very slow and expensive computer models, such as the latest climate models. The research proposed will provide methodological developments in two key areas that will facilitate UQ for high-end models. The first is a methodology for modelling spatio-temporal output of computer models dynamically. The methods developed will allow statistical models that represent the uncertainty in the spatio-temporal output of a computer simulator, for any choice of its input parameters, to be created that, when sampled from, will allow the modelled spatial field to evolve in time in a way that mimics the simulator and that reports the uncertainty in the representation. This will represent an important step forward for researchers in a variety of scientific disciplines, such as climate, where the evolution of spatial fields in time is of great interest. The proposed work will be developed from methods that the applicant has worked on for univariate time series and will combine techniques for the Bayesian analysis of multiple time series from the literature of state space modelling, with UQ methods that have explored basis expansions of spatial fields with Gaussian process emulation in order to make methodological advances.The second involves using the first methodology in order to develop methods for using a hierarchy of related, but lower resolution models combined with whatever runs currently exist on the high-end, state of the art, simulator, to model spatio-temporal output of the high-end simulator dynamically. This will be done by adapting and extending current methods for linking two hierarchical simulators statistically.The research will apply these methods to the Nucleus for European Modelling of the Ocean (NEMO) framework of ocean models. This framework contains a hierarchy of four ocean models, with the high-end model taking months to run at a single setting of the parameters on a super-computer due to the fine spatial resolution of the solver, and the fastest version running quickly on a desktop computer so that large ensembles can be generated. The high-end model, known as ORCA12, forms the ocean component of the UK's current climate model, HadGEM3-H. Working with collaborators at the National Oceanography Centre (NOC), the methodologies will be applied to existing and specially designed ensembles within the hierarchy in order to model key spatio-temporal fields of interest to the collaborators in ORCA12. This will aid them in understanding the response of the outputs of this important model and assist in its future development.A further goal will be to facilitate uncertainty quantification for key spatio-temporal fields in the real ocean using the statistical model for ORCA12 and standard UQ methods.
利用计算机模型研究复杂物理系统所引入的不确定性的量化是现代科学的一个基本问题。虽然存在一种统计方法来执行不确定性量化(UQ),但该技术尚未达到高端用户所需的水平,这些用户使用非常缓慢和昂贵的计算机模型,例如最新的气候模型。拟议的研究将在两个关键领域提供方法学发展,这将有助于高端车型的UQ。第一个是一种方法,用于动态地模拟计算机模型的时空输出。所开发的方法将允许统计模型,表示在时空输出的计算机模拟器的不确定性,其输入参数的任何选择,被创建,当采样时,将允许模拟的空间场在时间上演变的方式,模仿模拟器和报告的不确定性的表示。这将是一个重要的一步,为研究人员在各种科学学科,如气候,在那里的演变空间场的时间是非常感兴趣的。所提出的工作将从申请人已经针对单变量时间序列进行的方法中发展,并且将联合收割机技术与来自状态空间建模的文献的用于多个时间序列的贝叶斯分析相结合,与UQ的方法,探索了基础扩展的空间领域与高斯过程仿真,以使方法的进步。第二涉及使用第一种方法,以开发方法,相关但较低分辨率的模型的层次结构与当前存在于高端、最先进的模拟器上的任何运行相结合,以动态地对高端模拟器的时空输出进行建模。这将通过调整和扩展目前的方法来实现,用于在统计上连接两个分层模拟器,研究将把这些方法应用于欧洲海洋模拟核心(NEMO)海洋模型框架。该框架包含四个海洋模型的层次结构,由于求解器的精细空间分辨率,高端模型在超级计算机上以单个参数设置运行需要数月时间,而最快的版本在台式计算机上快速运行,以便可以生成大型集合。高端模型被称为ORCA 12,构成了英国当前气候模型HadGEM 3-H的海洋部分。与国家海洋学中心(NOC)的合作者合作,这些方法将应用于层次结构中现有的和专门设计的集合,以便对ORCA 12中合作者感兴趣的关键时空领域进行建模。这将有助于他们了解这个重要模式输出的响应,并有助于其未来的发展。进一步的目标是利用ORCA 12的统计模型和标准UQ方法,促进真实的海洋关键时空场的不确定性量化。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
THE ART AND SCIENCE OF CLIMATE MODEL TUNING
- DOI:10.1175/bams-d-15-00135.1
- 发表时间:2017-03-01
- 期刊:
- 影响因子:8
- 作者:Hourdin, Frederic;Mauritsen, Thorsten;Williamson, Daniel
- 通讯作者:Williamson, Daniel
Efficient calibration for high-dimensional computer model output using basis methods
- DOI:10.1615/int.j.uncertaintyquantification.2022039747
- 发表时间:2019-06
- 期刊:
- 影响因子:1.7
- 作者:James M. Salter;D. Williamson
- 通讯作者:James M. Salter;D. Williamson
Tuning without over-tuning: parametric uncertainty quantification for the NEMO ocean model
- DOI:10.5194/gmd-10-1789-2017
- 发表时间:2016-08
- 期刊:
- 影响因子:5.1
- 作者:D. Williamson;A. Blaker;B. Sinha
- 通讯作者:D. Williamson;A. Blaker;B. Sinha
Uncertainty Quantification for Computer Models With Spatial Output Using Calibration-Optimal Bases
- DOI:10.1080/01621459.2018.1514306
- 发表时间:2019-03-20
- 期刊:
- 影响因子:3.7
- 作者:Salter, James M.;Williamson, Daniel B.;Kharin, Viatcheslav
- 通讯作者:Kharin, Viatcheslav
Posterior Belief Assessment: Extracting Meaningful Subjective Judgements from Bayesian Analyses with Complex Statistical Models
后置信念评估:从复杂统计模型的贝叶斯分析中提取有意义的主观判断
- DOI:10.48550/arxiv.1512.00969
- 发表时间:2015
- 期刊:
- 影响因子:0
- 作者:Williamson D
- 通讯作者:Williamson D
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Williamson其他文献
Tendon shift in hallux valgus: observations at MR imaging
- DOI:
10.1007/s002560050128 - 发表时间:
1996-08-01 - 期刊:
- 影响因子:2.200
- 作者:
S. Eustace;Daniel Williamson;Michael Wilson;J. O’Byrne;Lisa Bussolari;Mark Thomas;Michael Stephens;John Stack;Barbara Weissman - 通讯作者:
Barbara Weissman
The Indigenous Birthing in an Urban Setting study: the IBUS study
城市环境中的土著出生研究:IBUS 研究
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:3.1
- 作者:
Sophie Hickey;Y. Roe;Yu Gao;Carmel Nelson;A. Carson;Jody Currie;Maree Reynolds;Kay Wilson;S. Kruske;R. Blackman;M. Passey;Anton Clifford;S. Tracy;Roianne West;Daniel Williamson;Machellee Kosiak;Shannon Watego;J. Webster;S. Kildea - 通讯作者:
S. Kildea
The role of the GP in follow-up cancer care: a systematic literature review
- DOI:
10.1007/s11764-016-0545-4 - 发表时间:
2016-05-02 - 期刊:
- 影响因子:2.900
- 作者:
Judith A. Meiklejohn;Alexander Mimery;Jennifer H. Martin;Ross Bailie;Gail Garvey;Euan T. Walpole;Jon Adams;Daniel Williamson;Patricia C. Valery - 通讯作者:
Patricia C. Valery
Phase-based approaches for treating complex trauma: a critical evaluation and case for implementation in the Australian context
治疗复杂创伤的阶段性方法:关键评估和在澳大利亚实施的案例
- DOI:
10.1080/00050067.2021.1968274 - 发表时间:
2021 - 期刊:
- 影响因子:1.9
- 作者:
Kathleen de Boer;Inge Gnatt;J. Mackelprang;Daniel Williamson;David Eckel;M. Nedeljkovic - 通讯作者:
M. Nedeljkovic
Aboriginal and Torres Strait Islander Cancer Survivors ’ Perspectives of Cancer Survivorship
原住民和托雷斯海峡岛民癌症幸存者对癌症幸存者的看法
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
J. Meiklejohn;Ross Bailie;Jon Adams;Gail Garvey;C. Bernardes;Daniel Williamson;B. Marcusson;Brian Arley;Jennifer H. Martin;Euan Walpole;Patricia C. Valery - 通讯作者:
Patricia C. Valery
Daniel Williamson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Williamson', 18)}}的其他基金
ADD-TREES: AI-elevated Decision-support via Digital Twins for Restoring and Enhancing Ecosystem Services
ADD-TREES:通过数字孪生提供人工智能提升的决策支持,以恢复和增强生态系统服务
- 批准号:
EP/Y005597/1 - 财政年份:2023
- 资助金额:
$ 27.96万 - 项目类别:
Research Grant
Uncertainty Quantification for Expensive COVID-19 Simulation Models (UQ4Covid)
昂贵的 COVID-19 模拟模型的不确定性量化 (UQ4Covid)
- 批准号:
EP/V051555/1 - 财政年份:2021
- 资助金额:
$ 27.96万 - 项目类别:
Research Grant
相似国自然基金
Identification and quantification of primary phytoplankton functional types in the global oceans from hyperspectral ocean color remote sensing
- 批准号:
- 批准年份:2022
- 资助金额:160 万元
- 项目类别:
高维半参数模型的稳健统计推断
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
玉米幼苗干旱胁迫应答NAC转录因子基因的筛选和鉴定
- 批准号:31201268
- 批准年份:2012
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
UQ4FM: Uncertainty Quantification for Flood Modelling
UQ4FM:洪水建模的不确定性量化
- 批准号:
EP/Y000145/1 - 财政年份:2024
- 资助金额:
$ 27.96万 - 项目类别:
Research Grant
KnowLEdGE creation and iNcreasing acreage of legumes in Diversified cropping systems by quAntification of theiR ecosYstem services (LEGENDARY)
通过量化生态系统服务来创造知识并增加多样化种植系统中的豆类种植面积(传奇)
- 批准号:
10089689 - 财政年份:2024
- 资助金额:
$ 27.96万 - 项目类别:
EU-Funded
UQ4FM: Uncertainty Quantification for Flood Modelling
UQ4FM:洪水建模的不确定性量化
- 批准号:
EP/X041093/1 - 财政年份:2024
- 资助金额:
$ 27.96万 - 项目类别:
Research Grant
NSF Convergence Accelerator Track L: UAV-assisted dual-comb spectroscopic detection, localization, and quantification of multiple atmospheric trace-gas emissions
NSF 收敛加速器轨道 L:无人机辅助的双梳光谱检测、定位和多种大气痕量气体排放的量化
- 批准号:
2344395 - 财政年份:2024
- 资助金额:
$ 27.96万 - 项目类别:
Standard Grant
CAREER: Virtual physiology of human tumor tissue for malignancy quantification
职业:用于恶性肿瘤定量的人体肿瘤组织虚拟生理学
- 批准号:
2340149 - 财政年份:2024
- 资助金额:
$ 27.96万 - 项目类别:
Continuing Grant
Collaborative Research: Design Decisions under Competition at the Edge of Bounded Rationality: Quantification, Models, and Experiments
协作研究:有限理性边缘竞争下的设计决策:量化、模型和实验
- 批准号:
2419423 - 财政年份:2024
- 资助金额:
$ 27.96万 - 项目类别:
Standard Grant
Quantification of the Impact of Hydrologic Controls on Anomalous Solute Transport and Mixing Dynamics in Partially Saturated Porous Media
水文控制对部分饱和多孔介质中异常溶质输运和混合动力学影响的量化
- 批准号:
2329250 - 财政年份:2024
- 资助金额:
$ 27.96万 - 项目类别:
Standard Grant
Conference: Power of Diversity in Uncertainty Quantification (PoD UQ)
会议:不确定性量化中多样性的力量 (PoD UQ)
- 批准号:
2403506 - 财政年份:2024
- 资助金额:
$ 27.96万 - 项目类别:
Standard Grant
CAREER: Scalable and Robust Uncertainty Quantification using Subsampling Markov Chain Monte Carlo Algorithms
职业:使用子采样马尔可夫链蒙特卡罗算法进行可扩展且稳健的不确定性量化
- 批准号:
2340586 - 财政年份:2024
- 资助金额:
$ 27.96万 - 项目类别:
Continuing Grant
UQ4FM: Uncertainty quantification algorithms for flood modelling
UQ4FM:洪水建模的不确定性量化算法
- 批准号:
EP/X040941/1 - 财政年份:2024
- 资助金额:
$ 27.96万 - 项目类别:
Research Grant














{{item.name}}会员




