Inhomogeneity and generalised bootstrap percolation in stochastic networks - 27785
随机网络中的不均匀性和广义自举渗透 - 27785
基本信息
- 批准号:EP/K019740/1
- 负责人:
- 金额:$ 12.24万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2013
- 资助国家:英国
- 起止时间:2013 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Bootstrap percolation processes were introduced by the physicists Chalupa, Leath and Reich in 1979 in order to describe certain magnetic phenomena and have been studied extensively since then by probabilists, mathematical physicists and combinatorialists. This is a class of "infection" processes on graphs that are based on the following simple rule: a node becomes infected if at least a certain number of its neighbours have become infected. Especially during the last 10 to 15 years, the field has seen a huge amount of growth, in particular, regarding probabilistic and extremal aspects of these processes. In this project, we will study more sophisticated versions of bootstrap percolation processes, which are based on majority rules. That is, a node becomes infected if at least a certain fraction of its neighbours have become infected. These processes have a considerable number of applications in themes ranging from the spread of ideas or trends in a society to evolutionary game theory. Despite their basic nature, their rigorous study remains a major challenge. The main goal of the project is to develop the theory of such processes on stochastic networks that exhibit various forms of inhomogeneity. This general notion captures a number of properties that have been observed in real-world networks, such as social or biological networks. In fact, inhomogeneity is a key feature of real-world networks, which reflects the diversity within a population. The project will explore the effects that various forms of inhomogeneity have on the way these processes evolve, leading to a deeper understanding of phenomena that are not observed in "homogeneous" structures. Its results will give new insight on mechanisms that underpin many societal and economic processes. The study of these processes has become increasingly important during the last 10 years, mainly due to the enormous growth of economic activity over internet platforms as well as the increasing impact of social media.
自举逾渗过程是由物理学家Chalupa、Leath和赖希在1979年为了描述某些磁现象而提出的,从那时起,概率学家、数学物理学家和组合学家就对它进行了广泛的研究。这是一类基于以下简单规则的图上的“感染”过程:如果至少有一定数量的邻居被感染,则节点被感染。特别是在过去的10到15年里,该领域已经看到了巨大的增长,特别是在这些过程的概率和极端方面。在这个项目中,我们将研究更复杂的版本的自举渗流过程,这是基于多数规则。也就是说,如果一个节点的邻居中至少有一部分被感染,那么该节点就会被感染。这些过程有相当数量的应用主题,从思想或趋势在社会中的传播到进化博弈论。尽管它们具有基本性质,但对其进行严格的研究仍然是一个重大挑战。该项目的主要目标是发展这种过程的随机网络,表现出各种形式的不均匀性的理论。这个一般概念捕捉了在现实世界的网络中观察到的许多属性,例如社交或生物网络。事实上,不均匀性是真实世界网络的一个关键特征,它反映了群体内部的多样性。该项目将探索各种形式的不均匀性对这些过程演变方式的影响,从而更深入地了解在“均匀”结构中观察不到的现象。其结果将为许多社会和经济进程的基础机制提供新的见解。在过去的10年里,对这些过程的研究变得越来越重要,主要是由于互联网平台上的经济活动的巨大增长以及社交媒体的影响力越来越大。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A phase transition regarding the evolution of bootstrap processes in inhomogeneous random graphs
非齐次随机图中自举过程演化的相变
- DOI:10.48550/arxiv.1609.08892
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Fountoulakis Nikolaos
- 通讯作者:Fountoulakis Nikolaos
Bootstrap Percolation in Power-Law Random Graphs
- DOI:10.1007/s10955-014-0946-6
- 发表时间:2014-04-01
- 期刊:
- 影响因子:1.6
- 作者:Amini, Hamed;Fountoulakis, Nikolaos
- 通讯作者:Fountoulakis, Nikolaos
A phase transition in the evolution of bootstrap percolation processes on preferential attachment graphs
优先附着图上引导渗透过程演化的相变
- DOI:10.48550/arxiv.1404.4070
- 发表时间:2014
- 期刊:
- 影响因子:0
- 作者:Amin Abdullah Mohammed
- 通讯作者:Amin Abdullah Mohammed
Bootstrap percolation and the geometry of complex networks
- DOI:10.1016/j.spa.2015.08.005
- 发表时间:2016-01-01
- 期刊:
- 影响因子:1.4
- 作者:Candellero, Elisabetta;Fountoulakis, Nikolaos
- 通讯作者:Fountoulakis, Nikolaos
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nikolaos Fountoulakis其他文献
Retraction Note: Annexin A1 attenuates microvascular complications through restoration of Akt signalling in a murine model of type 1 diabetes
- DOI:
10.1007/s00125-025-06418-2 - 发表时间:
2025-04-29 - 期刊:
- 影响因子:10.200
- 作者:
Gareth S. D. Purvis;Fausto Chiazza;Jianmin Chen;Rodrigo Azevedo-Loiola;Lukas Martin;Dennis H. M. Kusters;Chris Reutelingsperger;Nikolaos Fountoulakis;Luigi Gnudi;Muhammed M. Yaqoob;Massimo Collino;Christoph Thiemermann;Egle Solito - 通讯作者:
Egle Solito
Reducing the incidence of predictors of cardio-metabolic disease and dysglycaemia with lifestyle modification in at-risk persons – results of further analyses of DIABRISK-SL in those below 18 years of age
- DOI:
10.1186/s12916-019-1398-2 - 发表时间:
2019-09-19 - 期刊:
- 影响因子:8.300
- 作者:
Nikolaos Fountoulakis;Mahen Wijesuriya;Luigi Gnudi;Martin Gulliford;Janaka Karalliedde - 通讯作者:
Janaka Karalliedde
Reduced levels of anti-ageing hormone Klotho are associated with increased aortic stiffness in patients with Type 2 Diabetes
- DOI:
10.1016/j.artres.2018.10.196 - 发表时间:
2018-12-01 - 期刊:
- 影响因子:
- 作者:
Nikolaos Fountoulakis;Giuseppe Maltese;Luigi Gnudi;Janaka Karalliedde - 通讯作者:
Janaka Karalliedde
Non-linear renal function decline is frequent in patients with type 2 diabetes who progress fast to end-stage renal disease and is associated with African-Caribbean ethnicity and HbA<sub>1c</sub> variability
- DOI:
10.1016/j.jdiacomp.2021.107875 - 发表时间:
2021-05-01 - 期刊:
- 影响因子:
- 作者:
Stanimir I. Stoilov;Nikolaos Fountoulakis;Angeliki Panagiotou;Stephen Thomas;Janaka Karalliedde - 通讯作者:
Janaka Karalliedde
Hamilton cycles and perfect matchings in the KPKVB model
- DOI:
10.1016/j.spa.2020.09.012 - 发表时间:
2021-01-01 - 期刊:
- 影响因子:
- 作者:
Nikolaos Fountoulakis;Dieter Mitsche;Tobias Müller;Markus Schepers - 通讯作者:
Markus Schepers
Nikolaos Fountoulakis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nikolaos Fountoulakis', 18)}}的其他基金
Dynamic models of random simplicial complexes
随机单纯复形的动态模型
- 批准号:
EP/P026729/1 - 财政年份:2017
- 资助金额:
$ 12.24万 - 项目类别:
Research Grant
相似海外基金
New perspectives towards Woodall's Conjecture and the Generalised Berge-Fulkerson Conjecture
伍德尔猜想和广义伯奇-富尔克森猜想的新视角
- 批准号:
EP/X030989/1 - 财政年份:2024
- 资助金额:
$ 12.24万 - 项目类别:
Research Grant
Algebraic complexity theory via the algebraic geometry and representation theory of generalised continued fractions
通过代数几何和广义连分数表示论的代数复杂性理论
- 批准号:
EP/W014882/2 - 财政年份:2023
- 资助金额:
$ 12.24万 - 项目类别:
Research Grant
Asymptotics of Toeplitz determinants, soft Riemann-Hilbert problems and generalised Hilbert matrices (HilbertToeplitz)
Toeplitz 行列式的渐进性、软黎曼-希尔伯特问题和广义希尔伯特矩阵 (HilbertToeplitz)
- 批准号:
EP/X024555/1 - 财政年份:2023
- 资助金额:
$ 12.24万 - 项目类别:
Fellowship
Understanding cognitive and behavioural mechanisms of Generalised Anxiety Disorder in adolescents
了解青少年广泛性焦虑症的认知和行为机制
- 批准号:
2891560 - 财政年份:2023
- 资助金额:
$ 12.24万 - 项目类别:
Studentship
Generalised Photocatalysis by Enzymes (GENPENZ)
广义酶光催化 (GENPENZ)
- 批准号:
BB/X003027/1 - 财政年份:2023
- 资助金额:
$ 12.24万 - 项目类别:
Research Grant
Using the body to calm the mind: An examination of heart rate variability biofeedback as a tool to reduce generalised anxiety disorder symptoms
用身体平静心灵:心率变异性生物反馈检查作为减少广泛性焦虑症症状的工具
- 批准号:
MR/W005077/2 - 财政年份:2022
- 资助金额:
$ 12.24万 - 项目类别:
Research Grant
Studying generalised Thompson's group with tools from geometric group theory and operator algebra
使用几何群论和算子代数的工具研究广义汤普森群
- 批准号:
EP/W007371/1 - 财政年份:2022
- 资助金额:
$ 12.24万 - 项目类别:
Research Grant
Generalised Hörmander-Rellich-Pohozhaev-Morawetz identities and their applications in spectral geometry
广义 Hörmander-Rellich-Pohozhaev-Morawetz 恒等式及其在谱几何中的应用
- 批准号:
EP/W006898/1 - 财政年份:2022
- 资助金额:
$ 12.24万 - 项目类别:
Research Grant
Generalised method for determining IO equations of four bar kinematic chains of arbitrary architecture: planar, spherical, spatial
确定任意结构(平面、球形、空间)的四杆运动链 IO 方程的通用方法
- 批准号:
546523-2020 - 财政年份:2022
- 资助金额:
$ 12.24万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral














{{item.name}}会员




