Using Machine Learning to Identify Noninvasive Motion-Based Biomarkers of Cardiac Function

使用机器学习识别心脏功能的无创基于运动的生物标志物

基本信息

  • 批准号:
    EP/K030310/1
  • 负责人:
  • 金额:
    $ 36.74万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2013
  • 资助国家:
    英国
  • 起止时间:
    2013 至 无数据
  • 项目状态:
    已结题

项目摘要

Cardiovascular disease is the number one cause of death globally and represents a huge burden on the healthcare systems of the world. Diagnosis and planning of treatment for cardiovascular disease is often difficult and sometimes requires an invasive procedure which can itself be risky for the patient. Therefore, there is a lot of interest in devising improved and noninvasive techniques for diagnosis and treatment planning.Cardiovascular disease affects the ability of the heart to pump blood around the body. This ability is affected because the motion of the heart walls has been changed by the disease process to make the pumping action less efficient. Diagnosis and treatment planning for cardiovascular disease typically involves the use of imaging scanners such as ultrasound or magnetic resonance in an effort to evaluate the heart's motion and isolate the source of the problem. However, still in many cardiovascular applications the success rate of diagnosis and treatment planning is poor and patients suffer as a result.The aim of this project is to use sophisticated imaging and motion analysis techniques to devise novel noninvasive biomarkers for cardiovascular disease. The project will use motion modelling techniques that have previously been applied to correct the 'problem' of motion, for example to reduce artefacts in acquired images where the organ being imaged was moving. These techniques will be adapted to analyse the nature of the motion and to extract clinically useful information from it. This motion-based information will be combined with other multimodal data, such as anatomical information, genetic information or clinical history, to produce comprehensive noninvasive biomarkers of cardiovascular function.We will focus on two clinical exemplar applications. First, selection of patients for cardiac resynchronisation therapy (CRT). CRT is commonly used to treat heart failure but 30% of patients do not respond to the treatment and therefore undergo the invasive and risky procedure unnecessarily. We aim to devise biomarkers that can distinguish between patients that will respond to CRT and those that will not. The second application is the investigation of the effect of genetic variation on cardiac motion patterns. A large number of cardiovascular diseases are inherited. In several of them, such as left ventricular hypertrophy, many people exhibit no detectable symptoms until heart failure develops. Therefore, there is significant interest in discovering the mechanisms behind these conditions. We aim to devise biomarkers that can help us to understand the link between genetics and heart failure. Such an understanding would have the potential to result in improved screening and diagnosis of patients at genetic risk of heart failure.The project is highly novel and has significant potential impact. As well as the two clinical exemplar applications mentioned above, if successful similar techniques could be applied to other cardiovascular diseases, resulting in improved diagnosis and treatment for a wide range of heart conditions.
心血管疾病是全球头号死因,给世界医疗保健系统带来巨大负担。心血管疾病的诊断和治疗计划往往很困难,有时需要一种侵入性的程序,这本身就可能对患者造成风险。因此,人们对设计改进的非侵入性诊断和治疗计划技术非常感兴趣。心血管疾病影响心脏在全身泵血的能力。这种能力会受到影响,因为心壁的运动已经被疾病过程改变,从而降低了泵血行动的效率。心血管疾病的诊断和治疗计划通常涉及使用成像扫描仪,如超声波或磁共振,以努力评估心脏的运动并隔离问题的根源。然而,在许多心血管疾病的应用中,诊断和治疗计划的成功率很低,患者因此受到影响。本项目的目的是利用复杂的成像和运动分析技术来设计新型的非侵入性心血管疾病生物标志物。该项目将使用运动建模技术,这些技术以前已被应用于纠正运动的“问题”,例如,减少所获取的图像中被成像的器官正在运动的伪影。这些技术将被用来分析运动的性质,并从中提取临床有用的信息。这些基于运动的信息将与其他多模式数据,如解剖信息、遗传信息或临床病史相结合,产生全面的非侵入性心血管功能生物标志物。我们将专注于两个临床样本应用。首先,选择心脏再同步化治疗(CRT)的患者。CRT通常用于治疗心力衰竭,但30%的患者对治疗没有反应,因此接受了不必要的侵入性和高风险的手术。我们的目标是设计生物标志物,可以区分对CRT有反应的患者和不对CRT有反应的患者。第二个应用是研究遗传变异对心脏运动模式的影响。大量的心血管疾病是遗传的。在其中几种情况下,例如左心室肥厚,许多人在心力衰竭发展之前没有表现出可检测到的症状。因此,人们对发现这些条件背后的机制非常感兴趣。我们的目标是设计生物标记物,帮助我们了解基因和心力衰竭之间的联系。这样的理解将有可能导致改善对有心力衰竭遗传风险的患者的筛查和诊断。该项目非常新颖,具有重大的潜在影响。除了上面提到的两个临床范例应用,如果成功,类似的技术也可以应用于其他心血管疾病,从而改进对各种心脏疾病的诊断和治疗。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Estimation of passive and active properties in the human heart using 3D tagged MRI.
  • DOI:
    10.1007/s10237-015-0748-z
  • 发表时间:
    2016-10
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Asner, Liya;Hadjicharalambous, Myrianthi;Chabiniok, Radomir;Peresutti, Devis;Sammut, Eva;Wong, James;Carr-White, Gerald;Chowienczyk, Philip;Lee, Jack;King, Andrew;Smith, Nicolas;Razavi, Reza;Nordsletten, David
  • 通讯作者:
    Nordsletten, David
Registration of Multiview Echocardiography Sequences Using a Subspace Error Metric
使用子空间误差度量注册多视图超声心动图序列
Hollow Gradient-Structured Iron-Anchored Carbon Nanospheres for Enhanced Electromagnetic Wave Absorption.
用于增强电磁波吸收的空心梯度结构铁锚碳纳米球。
  • DOI:
    10.1007/978-3-319-52718-5_7
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    26.6
  • 作者:
    Wu C
  • 通讯作者:
    Wu C
Towards Left Ventricular Scar Localisation Using Local Motion Descriptors
  • DOI:
    10.1007/978-3-319-28712-6_4
  • 发表时间:
    2015-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Peressutti;Wenjia Bai;W. Shi;C. Tobon-Gomez;T. Jackson;M. Sohal;C. Rinaldi;D. Rueckert;A. King
  • 通讯作者:
    D. Peressutti;Wenjia Bai;W. Shi;C. Tobon-Gomez;T. Jackson;M. Sohal;C. Rinaldi;D. Rueckert;A. King
Prospective Identification of CRT Super Responders Using a Motion Atlas and Random Projection Ensemble Learning
使用运动图集和随机投影集成学习对 CRT 超级响应者进行前瞻性识别
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Peressutti D
  • 通讯作者:
    Peressutti D
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew King其他文献

Magnitude of Error Introduced by Application of Heart Rate Correction Formulas to the Canine QT Interval
将心率校正公式应用于犬 QT 间期所引入的误差大小
Boron-MgO composite as an X-ray transparent pressure medium in the multi-anvil apparatus
硼-氧化镁复合材料作为多砧装置中的 X 射线透明压力介质
  • DOI:
    10.1063/1.5137740
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Longjian Xie;Akira Yoneda;Fang Xu;Yuji Higo;Chao Wang;Yoshinori Tange;Andrew King;Nicolas Guignot
  • 通讯作者:
    Nicolas Guignot
Disk Parçalanmasının Fiziği: Viskoz-Eğrilik Kararsızlığı: Viskoz-Eğrilik Kararsızlığı
磁盘分区:Viskoz-Eğrilik Kararsızlığı:Viskoz-Eğrilik Kararsızlığı
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Suzan Doğan;Chris Nixon;Andrew King;J. E. Pringle
  • 通讯作者:
    J. E. Pringle
Intracellular Aluminium in Inflammatory and Glial Cells in Cerebral Amyloid Angiopathy: A Case Report
脑淀粉样血管病炎症细胞和神经胶质细胞中的细胞内铝:病例报告
Outflows from quasars and Ultra-Luminous X-ray sources
  • DOI:
    10.1016/j.nuclphysbps.2004.04.066
  • 发表时间:
    2003-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andrew King
  • 通讯作者:
    Andrew King

Andrew King的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew King', 18)}}的其他基金

Open Access Block Award 2024 - Wellcome Trust Sanger Institute
2024 年开放访问区块奖 - Wellcome Trust Sanger Institute
  • 批准号:
    EP/Z532253/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36.74万
  • 项目类别:
    Research Grant
Open Access Block Award 2023 - Wellcome Trust Sanger Institute
2023 年开放访问区块奖 - Wellcome Trust Sanger Institute
  • 批准号:
    EP/Y530001/1
  • 财政年份:
    2023
  • 资助金额:
    $ 36.74万
  • 项目类别:
    Research Grant
Efficient and Robust Assessment of Cardiovascular Disease Using Machine Learning and Ultrasound Imaging
利用机器学习和超声成像对心血管疾病进行高效、稳健的评估
  • 批准号:
    EP/R005516/1
  • 财政年份:
    2018
  • 资助金额:
    $ 36.74万
  • 项目类别:
    Research Grant
Astrophysics Research at the University of Leicester
莱斯特大学的天体物理学研究
  • 批准号:
    ST/N000757/1
  • 财政年份:
    2016
  • 资助金额:
    $ 36.74万
  • 项目类别:
    Research Grant
PET-MR Motion Correction Based Purely on Routine Clinical Scans
纯粹基于常规临床扫描的 PET-MR 运动校正
  • 批准号:
    EP/M009319/1
  • 财政年份:
    2015
  • 资助金额:
    $ 36.74万
  • 项目类别:
    Research Grant
Older Lesbian, Gay, Bisexual and Trans People: Minding the Knowledge Gaps
老年女同性恋、男同性恋、双性恋和变性人:注意知识差距
  • 批准号:
    ES/J022454/1
  • 财政年份:
    2013
  • 资助金额:
    $ 36.74万
  • 项目类别:
    Research Grant
Does diversity deliver? How variation in individual knowledge and behavioural traits impact on the performance of animal groups
多样性能带来好处吗?
  • 批准号:
    NE/H016600/3
  • 财政年份:
    2012
  • 资助金额:
    $ 36.74万
  • 项目类别:
    Fellowship
Does diversity deliver? How variation in individual knowledge and behavioural traits impact on the performance of animal groups
多样性能带来好处吗?
  • 批准号:
    NE/H016600/1
  • 财政年份:
    2011
  • 资助金额:
    $ 36.74万
  • 项目类别:
    Fellowship
Does diversity deliver? How variation in individual knowledge and behavioural traits impact on the performance of animal groups
多样性能带来好处吗?
  • 批准号:
    NE/H016600/2
  • 财政年份:
    2011
  • 资助金额:
    $ 36.74万
  • 项目类别:
    Fellowship
SBIR Phase I: Minimum Quantity Lubrication Delivered by Supercritical Carbon Dioxide for Forming Applications
SBIR 第一阶段:超临界二氧化碳为成型应用提供微量润滑
  • 批准号:
    0944814
  • 财政年份:
    2010
  • 资助金额:
    $ 36.74万
  • 项目类别:
    Standard Grant

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

I-Corps: Translation potential of using machine learning to predict oxaliplatin chemotherapy benefit in early colon cancer
I-Corps:利用机器学习预测奥沙利铂化疗对早期结肠癌疗效的转化潜力
  • 批准号:
    2425300
  • 财政年份:
    2024
  • 资助金额:
    $ 36.74万
  • 项目类别:
    Standard Grant
Accelerating pulse breeding using machine learning
利用机器学习加速豆类育种
  • 批准号:
    LP230100351
  • 财政年份:
    2024
  • 资助金额:
    $ 36.74万
  • 项目类别:
    Linkage Projects
An innovative cyber compliance platform using AI, live monitoring data and machine learning to automate compliance and due diligence completion.
一个创新的网络合规平台,使用人工智能、实时监控数据和机器学习来自动完成合规和尽职调查。
  • 批准号:
    10100493
  • 财政年份:
    2024
  • 资助金额:
    $ 36.74万
  • 项目类别:
    Collaborative R&D
Postdoctoral Fellowship: OCE-PRF: Using machine learning to investigate temporal dynamics of methane seep fauna at the Ocean Observatories Initiative (OOI) Regional Cabled Array
博士后奖学金:OCE-PRF:利用机器学习研究海洋观测计划 (OOI) 区域有线阵列中甲烷渗漏动物群的时间动态
  • 批准号:
    2307504
  • 财政年份:
    2024
  • 资助金额:
    $ 36.74万
  • 项目类别:
    Standard Grant
Is evolution predictable? Unlocking fundamental biological insights using new machine learning methods
进化是可预测的吗?
  • 批准号:
    MR/X033880/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36.74万
  • 项目类别:
    Fellowship
Enhancing Condition Monitoring and Prognostics of Variable Speed Motor Drives Using Machine Learning and IoT Technologies
使用机器学习和物联网技术增强变速电机驱动器的状态监测和预测
  • 批准号:
    2910604
  • 财政年份:
    2024
  • 资助金额:
    $ 36.74万
  • 项目类别:
    Studentship
Design of Novel Heterostructures for Future Application in Optoelectronics using First Principle Simulations and Machine Learning
使用第一原理模拟和机器学习设计用于未来光电子学应用的新型异质结构
  • 批准号:
    24K17615
  • 财政年份:
    2024
  • 资助金额:
    $ 36.74万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Using Novel Machine Learning Methods to Personalize Strategies for Prevention of Persistent AKI after Cardiac Surgery
使用新颖的机器学习方法制定个性化策略,预防心脏手术后持续性 AKI
  • 批准号:
    10979324
  • 财政年份:
    2024
  • 资助金额:
    $ 36.74万
  • 项目类别:
A Human-Trustable Self-Improving Machine Learning Framework for Rapid Disaster Responses Using Satellite Sensor Imagery
人类可信的自我改进机器学习框架,利用卫星传感器图像快速响应灾难
  • 批准号:
    EP/X027732/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36.74万
  • 项目类别:
    Research Grant
NSF-SNSF: Rapid Beamforming for Massive MIMO using Machine Learning on RF-only and Multi-modal Sensor Data
NSF-SNSF:在纯射频和多模态传感器数据上使用机器学习实现大规模 MIMO 的快速波束成形
  • 批准号:
    2401047
  • 财政年份:
    2024
  • 资助金额:
    $ 36.74万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了