Pressure-Tuning Interactions in Molecule-Based Magnets

分子磁体中的压力调节相互作用

基本信息

  • 批准号:
    EP/K033646/1
  • 负责人:
  • 金额:
    $ 97.76万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2014
  • 资助国家:
    英国
  • 起止时间:
    2014 至 无数据
  • 项目状态:
    已结题

项目摘要

In optimizing the properties of functional materials it is essential to understand in detail how structure influences properties. Identification of the most important structural parameters is time-consuming and usually investigated by preparing many different chemical modifications of a material, determining their crystal structures, measuring their physical properties and then looking for structure-property correlations. It is also necessary to assume that the chemical modifications have no influence other than to distort the structure, which is often not the case. High pressure offers a way around these difficulties. Pressure can be used to distort a material without the need for chemical modification. Both crystal structures and physical property measurements can be conducted at high pressure, so that the properties of the same material can be studied in different states of distortion, providing the most direct way to study correlations between structure and properties. In this proposal we focus on structure-property relationships in molecule-based magnets connected into extended chains, networks or frameworks using a combination of high pressure crystallography, magnetic measurements, spectroscopy and simulation which will exploit the UK's unique capabilities in extreme conditions research. Extended materials are of great interest because a small distortion at one site is propagated throughout the material by the strong chemical links between the magnetic centres, making the magnetic properties very sensitive to structural changes. We will design and build new instruments for magnetic susceptibility and diffraction measurements at high pressure and low temperature and we will exploit these new instruments and methodology to study two important classes of magnetic material. 1-D magnetic materials represent a fertile playground for discovering and understanding exotic physical phenomena. The magnetic behaviour of Single-Chain Magnets (SCMs) is fundamentally governed by the magnitude of nearest neighbour exchange interactions (intra-chain exchange), the extent of inter-chain interactions, and Ising-like anisotropy - all of which are sensitive to pressure. We have already shown that these parameters can be pressure-tuned in Single-Molecule Magnets (SMMs) and the same should be true for SCMs In 3-D frameworks magnetism can be combined with porosity, so that inclusion of different guest molecules provides another means for controlling magnetic properties. Prussian Blue Analogues consist of different metal cations linked by cyanide anions, while metal carboxylates build diamond-like frameworks. In both cases guest molecules influence magnetic ordering temperatures. Some metal-organic frameworks show spin-crossover behaviour, where different electronic configurations of the metal ions are stable under different conditions. The transition from one form to another is influenced by guest molecules which occupy the pores of the framework. High pressure will enable us to control the structure of the framework itself, the interactions between the host and the guest, and the number of guest molecules incorporated into the pores, providing a quantitative link between host-guest interactions and magnetism.
在优化功能材料的性能时,详细了解结构如何影响性能是至关重要的。确定最重要的结构参数是耗时的,通常需要对材料进行多种不同的化学修饰,确定其晶体结构,测量其物理性质,然后寻找结构-性质的相关性。还必须假定化学修饰除了使结构扭曲外没有其他影响,但通常情况并非如此。高压提供了一种绕过这些困难的方法。压力可以用来扭曲材料,而不需要化学改性。可以在高压下进行晶体结构和物理性能测量,从而可以研究同一材料在不同变形状态下的性能,为研究结构与性能之间的相关性提供了最直接的方法。在本提案中,我们将重点关注连接到延伸链,网络或框架中的分子基磁铁的结构-性质关系,使用高压晶体学,磁测量,光谱学和模拟的组合,这将利用英国在极端条件研究方面的独特能力。扩展材料是非常有趣的,因为一个地方的小变形会通过磁中心之间的强化学联系传播到整个材料,使磁性能对结构变化非常敏感。我们将设计和建造新的仪器用于在高压和低温下的磁化率和衍射测量,我们将利用这些新的仪器和方法来研究两类重要的磁性材料。一维磁性材料是发现和理解奇异物理现象的沃土。单链磁体(scm)的磁性行为从根本上受最近邻交换相互作用(链内交换)的大小、链间相互作用的程度和伊辛类各向异性的影响,所有这些都对压力敏感。我们已经证明,这些参数可以在单分子磁体(SMMs)中进行压力调节,对于scm也是如此。在3-D框架中,磁性可以与孔隙度相结合,因此包含不同的客体分子提供了另一种控制磁性的方法。普鲁士蓝类似物由氰化物阴离子连接的不同金属阳离子组成,而金属羧酸盐则构建了类似钻石的框架。在这两种情况下,客体分子都会影响磁有序温度。一些金属有机骨架表现出自旋交叉行为,其中金属离子的不同电子构型在不同条件下是稳定的。从一种形式到另一种形式的转变受到占据框架孔隙的客体分子的影响。高压将使我们能够控制框架本身的结构,宿主和客体之间的相互作用,以及纳入孔隙的客体分子的数量,从而在宿主-客体相互作用和磁性之间提供定量联系。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dangling and Hydrolyzed Ligand Arms in [Mn3] and [Mn6] Coordination Assemblies: Synthesis, Characterization, and Functional Activity.
[Mn3] 和 [Mn6] 配位组装中的悬空和水解配体臂:合成、表征和功能活性。
  • DOI:
    10.1021/acs.inorgchem.6b02813
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Chattopadhyay K
  • 通讯作者:
    Chattopadhyay K
Field-induced slow relaxation in a monometallic manganese(III) single-molecule magnet.
  • DOI:
    10.1021/ic5024136
  • 发表时间:
    2015-01
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    G. Craig;J. Marbey;S. Hill;O. Roubeau;S. Parsons;M. Murrie
  • 通讯作者:
    G. Craig;J. Marbey;S. Hill;O. Roubeau;S. Parsons;M. Murrie
Probing the origin of the giant magnetic anisotropy in trigonal bipyramidal Ni(ii) under high pressure.
  • DOI:
    10.1039/c7sc04460g
  • 发表时间:
    2018-02-14
  • 期刊:
  • 影响因子:
    8.4
  • 作者:
    Craig GA;Sarkar A;Woodall CH;Hay MA;Marriott KER;Kamenev KV;Moggach SA;Brechin EK;Parsons S;Rajaraman G;Murrie M
  • 通讯作者:
    Murrie M
(C4H12N2)[CoCl4]: tetrahedrally coordinated Co2+ without the orbital degeneracy.
(C4H12N2)[CoCl4]:无轨道简并的四面体配位 Co2。
Putting the Squeeze on Molecule-Based Magnets: Exploiting Pressure to Develop Magneto-Structural Correlations in Paramagnetic Coordination Compounds
对基于分子的磁体施加压力:利用压力在顺磁配位化合物中发展磁结构相关性
  • DOI:
    10.3390/magnetochemistry6030032
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Etcheverry-Berrios A
  • 通讯作者:
    Etcheverry-Berrios A
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Simon Parsons其他文献

Change in Haloacetic Acid Formation Potential during UV and UV/H2O2 Treatment of Model Organic Compounds
模型有机化合物在 UV 和 UV/H2O2 处理过程中卤乙酸形成电位的变化
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hiroshi Sakai;Olivier Autin;Simon Parsons
  • 通讯作者:
    Simon Parsons
High-pressure polymorphism of cyclopentanol (C5H10O): the structure of cyclopentanol phase-V at 1.5 GPa.
环戊醇(C5H10O)的高压多晶型:1.5 GPa 下环戊醇 V 相的结构。
  • DOI:
    10.1107/s0909049505021461
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    S. Moggach;David R. Allan;P. Lozano;Simon Parsons
  • 通讯作者:
    Simon Parsons
スペシャルセッション・災害時交通マネジメント-公共交通の観点から-
特别会议:灾害期间的交通管理——从公共交通的角度——
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hiroshi Sakai;Olivier Autin;Simon Parsons;室井寿明;室井寿明;室井寿明
  • 通讯作者:
    室井寿明
Effect of pressure on the crystal structure of alpha-glycylglycine to 4.7 GPa; application of Hirshfeld surfaces to analyse contacts on increasing pressure.
4.7 GPa压力对α-甘氨酰甘氨酸晶体结构的影响;
Liver cell transplantation as a “bridge” therapy for urea cycle disorders: The Calgary experience
  • DOI:
    10.1016/j.clinbiochem.2014.07.078
  • 发表时间:
    2014-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Aneal Khan;Steven R. Martin;Mary Brindle;Simon Parsons;Seemab Haider;Nicole Prokopishyn;Jason Yap
  • 通讯作者:
    Jason Yap

Simon Parsons的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Simon Parsons', 18)}}的其他基金

CONSULT: Collaborative Mobile Decision Support for Managing Multiple Morbidities
咨询:用于管理多种疾病的协作移动决策支持
  • 批准号:
    EP/P010105/2
  • 财政年份:
    2020
  • 资助金额:
    $ 97.76万
  • 项目类别:
    Research Grant
An X-ray Diffractometer for Extreme Conditions Research
用于极端条件研究的 X 射线衍射仪
  • 批准号:
    EP/R042845/1
  • 财政年份:
    2018
  • 资助金额:
    $ 97.76万
  • 项目类别:
    Research Grant
CONSULT: Collaborative Mobile Decision Support for Managing Multiple Morbidities
咨询:用于管理多种疾病的协作移动决策支持
  • 批准号:
    EP/P010105/1
  • 财政年份:
    2017
  • 资助金额:
    $ 97.76万
  • 项目类别:
    Research Grant
FORTRESS: F block cOvalency and Reactivity defined by sTructural compRESSibility
FORTRESS:由结构压缩性定义的 F 嵌段价和反应性
  • 批准号:
    EP/N022122/1
  • 财政年份:
    2016
  • 资助金额:
    $ 97.76万
  • 项目类别:
    Research Grant
TC: Small: Collaborative Research: An Argumentation-based Framework for Security Management
TC:小型:协作研究:基于论证的安全管理框架
  • 批准号:
    1117761
  • 财政年份:
    2011
  • 资助金额:
    $ 97.76万
  • 项目类别:
    Standard Grant
Pressure-sensitive complex formation based on self-assembling ligands
基于自组装配体的压敏复合物形成
  • 批准号:
    EP/G015333/1
  • 财政年份:
    2009
  • 资助金额:
    $ 97.76万
  • 项目类别:
    Research Grant
Industrial Doctorate Centre: Skills Technology, Research, and Management (STREAM) for the UK Water Sector
工业博士中心:英国水务部门的技能技术、研究和管理 (STREAM)
  • 批准号:
    EP/G037094/1
  • 财政年份:
    2009
  • 资助金额:
    $ 97.76万
  • 项目类别:
    Training Grant
The Effect of High Pressure on Single Molecule Magnets
高压对单分子磁体的影响
  • 批准号:
    EP/D503744/1
  • 财政年份:
    2006
  • 资助金额:
    $ 97.76万
  • 项目类别:
    Research Grant
MRI: Acquisition of Bipedal Robot Facility to Support Research into Improvement of Orientation and Stability of Locomotion
MRI:收购双足机器人设施以支持改善运动方向和稳定性的研究
  • 批准号:
    0520989
  • 财政年份:
    2005
  • 资助金额:
    $ 97.76万
  • 项目类别:
    Standard Grant
Tools and techniques for automated mechanism design
自动化机构设计的工具和技术
  • 批准号:
    0329037
  • 财政年份:
    2003
  • 资助金额:
    $ 97.76万
  • 项目类别:
    Continuing Grant

相似海外基金

Metal Oxynitrides: Tuning Metal-N and Metal-O Interactions for Improved Electrocatalytic Properties at the Liquid/Solid Interface
金属氮氧化物:调节金属-N 和金属-O 相互作用以改善液/固界面的电催化性能
  • 批准号:
    2112864
  • 财政年份:
    2021
  • 资助金额:
    $ 97.76万
  • 项目类别:
    Standard Grant
Strain-tuning electronic structure and quantum many-body interactions
应变调节电子结构和量子多体相互作用
  • 批准号:
    EP/T02108X/1
  • 财政年份:
    2020
  • 资助金额:
    $ 97.76万
  • 项目类别:
    Research Grant
Tuning the Interactions between Biomolecules and Surfaces via a Peptide Self-Assembled Monolayer Framework
通过肽自组装单层框架调节生物分子和表面之间的相互作用
  • 批准号:
    2026259
  • 财政年份:
    2020
  • 资助金额:
    $ 97.76万
  • 项目类别:
    Standard Grant
Tuning ion channel:drug interactions with unnatural amino acid mutagenesis
调节离子通道:药物与非天然氨基酸诱变的相互作用
  • 批准号:
    RGPIN-2014-06392
  • 财政年份:
    2019
  • 资助金额:
    $ 97.76万
  • 项目类别:
    Discovery Grants Program - Individual
Tuning Interfacial Biomolecule Interactions with Massively Parallel Nanopore Arrays
使用大规模并行纳米孔阵列调节界面生物分子相互作用
  • 批准号:
    1704901
  • 财政年份:
    2017
  • 资助金额:
    $ 97.76万
  • 项目类别:
    Standard Grant
Tuning ion channel:drug interactions with unnatural amino acid mutagenesis
调节离子通道:药物与非天然氨基酸诱变的相互作用
  • 批准号:
    RGPIN-2014-06392
  • 财政年份:
    2017
  • 资助金额:
    $ 97.76万
  • 项目类别:
    Discovery Grants Program - Individual
Conjugated oligomers and polymers with functionalized side chains: tuning the pi - pi interactions and the optoelectronic properties
具有功能化侧链的共轭低聚物和聚合物:调节 pi - pi 相互作用和光电性能
  • 批准号:
    332723289
  • 财政年份:
    2016
  • 资助金额:
    $ 97.76万
  • 项目类别:
    Research Grants
Tuning Biomaterials-immune cell interactions for treatment of glioblastoma multiforme
调整生物材料-免疫细胞相互作用治疗多形性胶质母细胞瘤
  • 批准号:
    9348653
  • 财政年份:
    2016
  • 资助金额:
    $ 97.76万
  • 项目类别:
Tuning ion channel:drug interactions with unnatural amino acid mutagenesis
调节离子通道:药物与非天然氨基酸诱变的相互作用
  • 批准号:
    RGPIN-2014-06392
  • 财政年份:
    2016
  • 资助金额:
    $ 97.76万
  • 项目类别:
    Discovery Grants Program - Individual
Tuning Biomaterials-immune cell interactions for treatment of glioblastoma multiforme
调整生物材料-免疫细胞相互作用治疗多形性胶质母细胞瘤
  • 批准号:
    9512575
  • 财政年份:
    2016
  • 资助金额:
    $ 97.76万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了