Centre for Nature Inspired Engineering (CNIE): Addressing Challenges in Sustainability and Scalable Manufacturing
自然启发工程中心 (CNIE):应对可持续性和可扩展制造方面的挑战
基本信息
- 批准号:EP/K038656/1
- 负责人:
- 金额:$ 634.65万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2013
- 资助国家:英国
- 起止时间:2013 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Evolution over the eons has made Nature a treasure trove of clever solutions to sustainability, resilience, and ways to efficiently utilize scarce resources. The Centre for Nature Inspired Engineering will draw lessons from nature to engineer innovative solutions to our grand challenges in energy, water, materials, health, and living space. Rather than imitating nature out of context or succumbing to superficial analogies, research at the Centre will take a decidedly scientific approach to uncover fundamental mechanisms underlying desirable traits, and apply these mechanisms to design and synthesise artificial systems that hereby borrow the traits of the natural model. The Centre will initially focus on three key mechanisms, as they are so prevalent in nature, amenable to practical implementation, and are expected to have transformational impact on urgent issues in sustainability and scalable manufacturing. These mechanisms are: (T1) "Hierarchical Transport Networks": the way nature bridges microscopic to macroscopic length scales in order to preserve the intricate microscopic or cellular function throughout (as in trees, lungs and the circulatory system); (T2) "Force Balancing": the balanced use of fundamental forces, e.g., electrostatic attraction/repulsion and geometrical confinement in microscopic spaces (as in protein channels in cell membranes, which trump artificial membranes in selective, high-permeation separation performance); and (T3) "Dynamic Self-Organisation": the creation of robust, adaptive and self-healing communities thanks to collective cooperation and emergence of complex structures out of much simpler individual components (as in bacterial communities and in biochemical cycles). Such nature-inspired, rather than narrowly biomimetic approach, allows us to marry advanced manufacturing capabilities and access to non-physiological conditions, with nature's versatile mechanisms that have been remarkably little employed in a rational, bespoke manner. High-performance computing and experimentation now allow us to unravel fundamental mechanisms, from the atomic to the macroscopic, in an unprecedented way, providing the required information to transcend empiricism, and guide practical realisations of nature-inspired designs. In first instance, three examples will be developed to validate each of the aforementioned natural mechanisms, and simultaneously apply them to problems of immediate relevance that tie in to the Grand Challenges in energy, water, materials and scalable manufacturing. These are: (1) robust, high-performance fuel cells with greatly reduced amount of precious catalyst, by using a lung-inspired architecture; (2) membranes for water desalination inspired by the mechanism of biological cell membranes; (3) high-performance functional materials, resp. architectural design (cities, buildings), informed by agent-based modelling on bacteria-inspired, resp. human communities, to identify roads to robust, adaptive complex systems.To meet these ambitious goals, the Centre assembles an interdisciplinary team of experts, from chemical and biochemical engineering, to computer science, architecture, materials, chemistry and genetics. The Centre researchers collaborate with, and seek advice from industrial partners from a wide range of industries, which accelerates practical implementation. The Centre has an open, outward looking mentality, inviting broader collaboration beyond the core at UCL. It will devote significant resources to explore the use of the validated nature-inspired mechanisms to other applications, and extend investigation to other natural mechanisms that may inform solutions to problems in sustainability and scalable manufacturing.
进化超越了自然,使自然成为可持续性、弹性和有效利用稀缺资源的巧妙解决方案的宝库。自然启发工程中心将从自然中汲取经验教训,设计创新的解决方案,以应对我们在能源,水,材料,健康和生活空间方面的重大挑战。该中心的研究不是脱离背景模仿自然或屈服于肤浅的类比,而是采取果断的科学方法来揭示理想特征背后的基本机制,并将这些机制应用于设计和合成人工系统,从而借用自然模型的特征。该中心最初将侧重于三个关键机制,因为它们在性质上非常普遍,易于实际实施,预计将对可持续性和可扩展制造业的紧迫问题产生变革性影响。这些机制是:(T1)“分层运输网络”:自然界将微观长度尺度与宏观长度尺度连接起来的方式,以保持整个复杂的微观或细胞功能(如树木、肺和循环系统);(T2)“力平衡”:平衡使用基本力,例如,微观空间中的静电吸引/排斥和几何约束(如细胞膜中的蛋白质通道,其在选择性、高渗透分离性能方面胜过人工膜);和(T3)“动态自组织”:创建一个强大的,适应性和自我修复的社区,这要归功于集体合作和复杂结构的出现,而复杂结构是由简单得多的单个组件组成的(如在细菌群落和生物化学循环中)。这种受自然启发的方法,而不是狭隘的仿生方法,使我们能够将先进的制造能力和非生理条件与自然界的多功能机制结合起来,这些机制很少以合理的定制方式使用。高性能计算和实验现在使我们能够以前所未有的方式解开从原子到宏观的基本机制,提供超越自然主义所需的信息,并指导自然灵感设计的实际实现。首先,将开发三个例子来验证上述每一种自然机制,并同时将其应用于与能源,水,材料和可扩展制造的重大挑战密切相关的问题。这些措施包括:(1)通过使用肺启发的结构,具有大大减少的贵重催化剂量的坚固的高性能燃料电池;(2)受生物细胞膜机理启发的用于水脱盐的膜;(3)高性能功能材料,分别是:建筑设计(城市,建筑物),分别由基于代理的建模和细菌启发,为了实现这些雄心勃勃的目标,中心组建了一支跨学科的专家团队,从化学和生物化学工程到计算机科学,建筑,材料,化学和遗传学。该中心的研究人员与来自各行各业的工业合作伙伴合作,并寻求他们的建议,从而加快了实际实施。该中心有一个开放的,外向的心态,邀请更广泛的合作超出了UCL的核心。它将投入大量资源,探索将经过验证的自然启发机制用于其他应用,并将调查扩展到其他自然机制,这些机制可能为可持续性和可扩展制造问题的解决方案提供信息。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Additional file 1: Figure S1. of Sexual conflict explains the extraordinary diversity of mechanisms regulating mitochondrial inheritance
附加文件 1:图 S1。
- DOI:10.6084/m9.figshare.c.3915010_d1
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Arunas Radzvilavicius
- 通讯作者:Arunas Radzvilavicius
Integration of supercapacitors into printed circuit boards
- DOI:10.1016/j.est.2018.06.016
- 发表时间:2018-10
- 期刊:
- 影响因子:9.4
- 作者:Dina Ibrahim Abouelamaiem;L. Rasha;Guanjie He;T. Neville;J. Millichamp;T. Mason;A. B. Jorge;I. Parkin
- 通讯作者:Dina Ibrahim Abouelamaiem;L. Rasha;Guanjie He;T. Neville;J. Millichamp;T. Mason;A. B. Jorge;I. Parkin
Estimating permeability in shales and other heterogeneous porous media: Deterministic vs. stochastic investigations
- DOI:10.1016/j.coal.2019.02.009
- 发表时间:2019-03
- 期刊:
- 影响因子:5.6
- 作者:M. Apostolopoulou;R. Dusterhoft;R. Day;M. Stamatakis;M. Coppens;A. Striolo
- 通讯作者:M. Apostolopoulou;R. Dusterhoft;R. Day;M. Stamatakis;M. Coppens;A. Striolo
Non-fouling flow reactors for nanomaterial synthesis
- DOI:10.1039/d2re00412g
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:M. Besenhard;Sayan Pal;G. Gkogkos;A. Gavriilidis
- 通讯作者:M. Besenhard;Sayan Pal;G. Gkogkos;A. Gavriilidis
Fractionation of block copolymers for pore size control and reduced dispersity in mesoporous inorganic thin films
- DOI:10.1039/d0nr05132b
- 发表时间:2020-09-21
- 期刊:
- 影响因子:6.7
- 作者:Alvarez-Fernandez, Alberto;Reid, Barry;Guldin, Stefan
- 通讯作者:Guldin, Stefan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anthony Finkelstein其他文献
Guest Editorial: XML and Software Engineering
- DOI:
10.1023/a:1021808716070 - 发表时间:
2003-01-01 - 期刊:
- 影响因子:3.100
- 作者:
Cecilia Mascolo;Wolfgang Emmerich;Anthony Finkelstein - 通讯作者:
Anthony Finkelstein
A composite computational model of liver glucose homeostasis. II. Exploring system behaviour
肝脏葡萄糖稳态的复合计算模型。
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:3.9
- 作者:
T. Sumner;James Hetherington;Robert M. Seymour;Long;M. Rey;S. Yamaji;P. Saffrey;O. Margoninski;I.D.L. Bogle;Anthony Finkelstein;Anne Warner - 通讯作者:
Anne Warner
Requirements engineering research: Coordination and infrastructure
- DOI:
10.1007/bf01235766 - 发表时间:
1996-03-01 - 期刊:
- 影响因子:3.300
- 作者:
Anthony Finkelstein - 通讯作者:
Anthony Finkelstein
86 12091 – Principles of Provenance 2 Table of Contents
86 12091 – 来源原则 2 目录
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
James Cheney;Anthony Finkelstein;Bertram Ludäscher;Stijn Vansummeren - 通讯作者:
Stijn Vansummeren
Implementing a compliance manager
- DOI:
10.1007/bf02919969 - 发表时间:
1998-06-01 - 期刊:
- 影响因子:3.300
- 作者:
Stephen Armitage;Richard Stevens;Anthony Finkelstein - 通讯作者:
Anthony Finkelstein
Anthony Finkelstein的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anthony Finkelstein', 18)}}的其他基金
Small items of research equipment at UCL
伦敦大学学院的小型研究设备
- 批准号:
EP/K031481/1 - 财政年份:2012
- 资助金额:
$ 634.65万 - 项目类别:
Research Grant
How to Fix Inconsistencies in Design Models
如何解决设计模型中的不一致问题
- 批准号:
EP/F032110/1 - 财政年份:2007
- 资助金额:
$ 634.65万 - 项目类别:
Research Grant
相似海外基金
NSF Convergence Accelerator Track L: Intelligent Nature-inspired Olfactory Sensors Engineered to Sniff (iNOSES)
NSF 融合加速器轨道 L:受自然启发的智能嗅觉传感器,专为嗅探而设计 (iNOSES)
- 批准号:
2344256 - 财政年份:2024
- 资助金额:
$ 634.65万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track M: Nature Inspired Bio-manufactured Terminal Hydroxylated Fatty Acid Copolyesters
NSF 融合加速器轨道 M:受自然启发的生物制造末端羟基化脂肪酸共聚酯
- 批准号:
2344366 - 财政年份:2024
- 资助金额:
$ 634.65万 - 项目类别:
Standard Grant
Transfer Optimisation System for Adaptive Automated Nature-Inspired Optimisation
用于自适应自动自然优化的传输优化系统
- 批准号:
MR/X011135/1 - 财政年份:2023
- 资助金额:
$ 634.65万 - 项目类别:
Fellowship
Nature-inspired self-powered reverse osmosis membranes for sustainable water purification
受自然启发的自供电反渗透膜,用于可持续水净化
- 批准号:
EP/X017923/1 - 财政年份:2022
- 资助金额:
$ 634.65万 - 项目类别:
Research Grant
Nature-inspired bio-Syngas Technologies for Olefins Synthesis
用于烯烃合成的受自然启发的生物合成气技术
- 批准号:
EP/W019221/1 - 财政年份:2022
- 资助金额:
$ 634.65万 - 项目类别:
Research Grant
Solving Differentially Private Selection Problems using Nature-inspired Optimization Techniques
使用受自然启发的优化技术解决差分私人选择问题
- 批准号:
558783-2021 - 财政年份:2022
- 资助金额:
$ 634.65万 - 项目类别:
Postgraduate Scholarships - Doctoral
Lignin engineering inspired by Nature
受自然启发的木质素工程
- 批准号:
568408-2022 - 财政年份:2022
- 资助金额:
$ 634.65万 - 项目类别:
Postdoctoral Fellowships
Generation and Self-Assembly of Novel Polymeric Materials Inspired by Nature
受大自然启发的新型高分子材料的生成和自组装
- 批准号:
RGPIN-2018-05243 - 财政年份:2022
- 资助金额:
$ 634.65万 - 项目类别:
Discovery Grants Program - Individual
SBIR Direct Phase II: Nature Inspired Biphasic Glue for Dura Repair
SBIR Direct Phase II:用于硬脑膜修复的自然双相胶水
- 批准号:
10489915 - 财政年份:2022
- 资助金额:
$ 634.65万 - 项目类别:
Nature-Inspired Design - Improving Coastal Resilience through Biomimicry
受自然启发的设计 - 通过仿生学提高海岸恢复能力
- 批准号:
RGPAS-2020-00105 - 财政年份:2022
- 资助金额:
$ 634.65万 - 项目类别:
Discovery Grants Program - Accelerator Supplements