Workshop on the Extended Family of R. Thompson Groups.

R. Thompson 团体大家庭研讨会。

基本信息

  • 批准号:
    EP/L000113/1
  • 负责人:
  • 金额:
    $ 2.19万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2014
  • 资助国家:
    英国
  • 起止时间:
    2014 至 无数据
  • 项目状态:
    已结题

项目摘要

The proposed project is a workshop, with primary focus the theory of the extended family of R. Thompson groups. The extended family of R. Thompson groups are an important family of (generally) finitely presented simple groups (or, nearly simple) which contain the first known examples of finitely presented infinite simple groups. The theory of this family intersects other areas of mathematics in often surprising and profound ways; providing examples and counterexamples to questions from areas such as logic (R. J. Thompson), solvable and unsolvable problems in group theory (R. J. Thompson and R. McKenzie), homotopy and category theory (P. Freyd and A. Heller), shape theory (J Dydak and H. Hastings), Teichmuller theory and mapping class groups (R. Penner) and various other areas as well.The workshop will serve to both educate new and established researchers on the State of the Art in this dynamic area, as well as highlight some of the many connections between the theory of these groups and other areas of Mathematics. In particular, the workshop will host three mini-courses on the connections of the extended family of the R. Thompson groups to various outward-reaching areas of mathematics. The titles and presenters of these workshops are given below:1) Semigroups, 'etale topological groupoids, C*-algebras, and Thompson groups; Mark V. Lawson.2) Braids, logic and geometric presentations for Thompson's groups; Patrick Dehornoy.3) Thurston's piecewise integral projective groups; Vladimir Sergiescu.The workshop will also host a problem session focussing on these groups and the broader topics associated with them, and will publish summaries of the minicourses and the problem session discussion in a topical research journal.
该项目是一个研讨会,主要关注R的扩展家族理论。汤普森集团本文报道了R.汤普森群是一类重要的(一般)双表示单群(或近似单群),其中包含了第一个已知的双表示无限单群的例子。这个家族的理论以令人惊讶和深刻的方式与其他数学领域交叉;为逻辑等领域的问题提供了例子和反例。J. Thompson),solvable and unsolvable problems in group theory(R. J. Thompson和R. McKenzie),同伦和范畴论(P. Freyd and A. Heller)、形状理论(J. Hastings)、Teichmuller理论和映射类群(R.该研讨会将有助于教育新的和建立的研究人员在这个动态领域的最新技术水平,以及突出这些群体的理论和数学的其他领域之间的许多联系。特别是,研讨会将举办三个小型课程的连接的大家庭的R。汤普森小组的各种数学的外向领域。这些研讨会的题目和主持人如下:1)半群,'etale拓扑群胚,C *-代数和Thompson群; Mark V.Lawson; 2)Thompson群的辫子,逻辑和几何表示;帕特里克Dehornoy; 3)Thurston的分段积分射影群;弗拉基米尔塞尔吉斯库。讲习班还将举办一个问题会议,重点是这些群体和与他们有关的更广泛的主题,并将在专题研究期刊上发表小型课程和问题讨论的摘要。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ideal structure of the C*-algebra of Thompson group T
Thompson T 群的 C* 代数的理想结构
  • DOI:
    10.48550/arxiv.1409.8099
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bleak Collin
  • 通讯作者:
    Bleak Collin
Some isomorphism results for Thompson-like groups V n (G)
Thompson 类群 V n (G) 的一些同构结果
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Collin Bleak其他文献

Collin Bleak的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Collin Bleak', 18)}}的其他基金

Bi-synchronizing automata, outer automorphism groups of Higman-Thompson groups, and automorphisms of the shift.
双同步自动机、Higman-Thompson 群的外自同构群以及平移自同构。
  • 批准号:
    EP/R032866/1
  • 财政年份:
    2018
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Research Grant

相似国自然基金

Extended Synaptotagmins在内质网与细胞质膜互作中的机制研究
  • 批准号:
    91854117
  • 批准年份:
    2018
  • 资助金额:
    92.0 万元
  • 项目类别:
    重大研究计划

相似海外基金

Collaborative Research: Extended Family Support and Housing Stability of Youth Over Time
合作研究:随着时间的推移,扩大家庭支持和青少年住房稳定性
  • 批准号:
    2312179
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Standard Grant
Collaborative Research: Extended Family Support and Housing Stability of Youth Over Time
合作研究:随着时间的推移,扩大家庭支持和青少年住房稳定性
  • 批准号:
    2312178
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Standard Grant
Collaborative Research: Extended Family Support and the Housing Stability of Youth
合作研究:扩大家庭支持和青少年的住房稳定性
  • 批准号:
    2148933
  • 财政年份:
    2022
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Standard Grant
Collaborative Research: Extended Family Support and the Housing Stability of Youth
合作研究:扩大家庭支持和青少年的住房稳定性
  • 批准号:
    2148934
  • 财政年份:
    2022
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Standard Grant
Persons with Dementia and their Extended Family Caregivers: Service Use, Barriers and Needs
痴呆症患者及其大家庭照顾者:服务使用、障碍和需求
  • 批准号:
    10094409
  • 财政年份:
    2020
  • 资助金额:
    $ 2.19万
  • 项目类别:
Persons with Dementia and their Extended Family Caregivers: Service Use, Barriers and Needs
痴呆症患者及其大家庭照顾者:服务使用、障碍和需求
  • 批准号:
    10642772
  • 财政年份:
    2020
  • 资助金额:
    $ 2.19万
  • 项目类别:
Persons with Dementia and their Extended Family Caregivers: Service Use, Barriers and Needs
痴呆症患者及其大家庭照顾者:服务使用、障碍和需求
  • 批准号:
    10443851
  • 财政年份:
    2020
  • 资助金额:
    $ 2.19万
  • 项目类别:
Persons with Dementia and their Extended Family Caregivers: Service Use, Barriers and Needs
痴呆症患者及其大家庭照顾者:服务使用、障碍和需求
  • 批准号:
    10264873
  • 财政年份:
    2020
  • 资助金额:
    $ 2.19万
  • 项目类别:
Extended Hours Adult Day Centres: Promoting Community-based Health and Social Care for People with Dementia and their Family Caregivers
成人日间中心延长营业时间:促进针对痴呆症患者及其家庭护理人员的社区健康和社会护理
  • 批准号:
    401122
  • 财政年份:
    2019
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Operating Grants
The influence of dementia care on family relations: The care burden and the cohesion of the extended family in Mexico
痴呆症护理对家庭关系的影响:墨西哥大家庭的护理负担和凝聚力
  • 批准号:
    25360017
  • 财政年份:
    2013
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了