Diophantine approximation, chromatic number, and equivalence classes of separated nets

丢番图近似、色数和分离网的等价类

基本信息

  • 批准号:
    EP/L001462/2
  • 负责人:
  • 金额:
    $ 29.07万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2013
  • 资助国家:
    英国
  • 起止时间:
    2013 至 无数据
  • 项目状态:
    已结题

项目摘要

In the branch of mathematics called combinatorics, a graph is an abstract object which can be thought of as a collection of points (called vertices), some of which are connected by line segments (called edges). We say that two vertices in a graph are adjacent if there in an edge connecting them. A colouring of a graph is a rule that assigns a label (called a colour) to each vertex, and the chromatic number of the graph is the minimum number of colours necessary to colour the graph so that no two adjacent vertices are the same colour.Graph colourings have a multitude of practical applications. As an example, suppose you would like to invite a number of people for interviews on the same day but that there are certain pairs of candidates whom you don't want to interview at the same time. What is the minimum number of time slots that you need? Think of the candidates as the vertices of a graph, with an edge connecting one to another if they are to be put in different time slots. If we let our different colours represent different time slots, then answering our question is equivalent to determining the chromatic number of the graph. This is merely an example to demonstrate the ease with which one can turn a common logistics problem into a problem about graph colourings. There are many problems like this in biology, physics, industry, computer science, and in the social sciences and media (for example social networking). Part of our proposal is to identify these problems and to use our mathematical techniques to solve them.Our approach to studying chromatic number is via an unexpected route. We will be considering the chromatic number of important families of infinite graphs, by connecting them with problems in Diophantine approximation (the study of approximation of numbers by fractions) and dynamical systems. This is a promising new direction which will push the boundary of current knowledge in mathematics and open the door for the flow of new ideas between many subjects.
在数学的分支组合学中,图是一个抽象的对象,它可以被认为是点(称为顶点)的集合,其中一些点由线段(称为边)连接。我们说一个图中的两个顶点是相邻的,如果有一条边连接它们。图的着色是指给图的每一个顶点赋予一个标号(称为颜色)的规则,图的色数是使图的每一个相邻顶点都不具有相同颜色所需的最小颜色数。图的着色有许多实际应用。举个例子,假设你想在同一天邀请多个人参加面试,但是有几对候选人你不想同时面试。您需要的最小时隙数是多少?把候选人看作是一个图的顶点,如果要把他们放在不同的时隙中,就用一条边把他们连接起来。如果我们让不同的颜色代表不同的时隙,那么回答我们的问题就相当于确定图的色数。这仅仅是一个例子,展示了如何轻松地将一个普通的物流问题转化为一个关于图着色的问题。在生物学、物理学、工业、计算机科学、社会科学和媒体(例如社交网络)中存在许多类似的问题。我们的建议的一部分是确定这些问题,并使用我们的数学技术来解决它们。我们的方法来研究色数是通过一个意想不到的路线。我们将考虑重要的无限图族的色数,通过将它们与丢番图逼近(分数逼近数的研究)和动力系统中的问题联系起来。这是一个很有前途的新方向,它将推动当前数学知识的边界,并为许多学科之间的新思想流动打开大门。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Gaps problems and frequencies of patches in cut and project sets
剪切和项目集中的间隙问题和补丁频率
Hankel Determinants of Zeta Values
Zeta 值的 Hankel 决定因素
  • DOI:
    10.3842/sigma.2015.101
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Haynes A
  • 通讯作者:
    Haynes A
Constructing bounded remainder sets and cut-and-project sets which are bounded distance to lattices
构造有界余数集和剪切投影集,它​​们是到格的有界距离
Equivalence classes of codimension-one cut-and-project nets
余维一割投影网的等价类
Reductive pairs arising from representations
  • DOI:
    10.1016/j.jalgebra.2016.02.006
  • 发表时间:
    2014-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Oliver Goodbourn
  • 通讯作者:
    Oliver Goodbourn
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alan Haynes其他文献

The mixed Littlewood conjecture for pseudo-absolute values
伪绝对值的混合利特尔伍德猜想
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Stephen Harrap;Alan Haynes
  • 通讯作者:
    Alan Haynes
Accumulation points of normalized approximations
归一化近似值的累加点
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kavita Dhanda;Alan Haynes
  • 通讯作者:
    Alan Haynes
Verification of Ensemble Water Supply Forecasts for Sierra Nevada Watersheds
内华达山脉流域集合供水预测的验证
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. He;B. Whitin;R. Hartman;A. Henkel;Peter Fickenschers;S. Staggs;A. Morin;Michael Imgarten;Alan Haynes;M. Russo
  • 通讯作者:
    M. Russo

Alan Haynes的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alan Haynes', 18)}}的其他基金

Diophantine Approximation and Aperiodic Order
丢番图近似和非周期阶
  • 批准号:
    2001248
  • 财政年份:
    2020
  • 资助金额:
    $ 29.07万
  • 项目类别:
    Standard Grant
Houston Summer School on Dynamical Systems
休斯顿动力系统暑期学校
  • 批准号:
    1700273
  • 财政年份:
    2017
  • 资助金额:
    $ 29.07万
  • 项目类别:
    Standard Grant
Gaps theorems and statistics of patterns in quasicrystals
准晶体中的间隙定理和模式统计
  • 批准号:
    EP/M023540/1
  • 财政年份:
    2015
  • 资助金额:
    $ 29.07万
  • 项目类别:
    Research Grant
Diophantine approximation, chromatic number, and equivalence classes of separated nets
丢番图近似、色数和分离网的等价类
  • 批准号:
    EP/L001462/1
  • 财政年份:
    2013
  • 资助金额:
    $ 29.07万
  • 项目类别:
    Research Grant
Circle rotations and their generalisations in Diophantine approximation
丢番图近似中的圆旋转及其推广
  • 批准号:
    EP/J00149X/2
  • 财政年份:
    2013
  • 资助金额:
    $ 29.07万
  • 项目类别:
    Fellowship
Circle rotations and their generalisations in Diophantine approximation
丢番图近似中的圆旋转及其推广
  • 批准号:
    EP/J00149X/1
  • 财政年份:
    2011
  • 资助金额:
    $ 29.07万
  • 项目类别:
    Fellowship

相似国自然基金

非牛顿流方程(组)及其随机模型无穷维动力系统的研究
  • 批准号:
    11126160
  • 批准年份:
    2011
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目
枢纽港选址及相关问题的算法设计
  • 批准号:
    71001062
  • 批准年份:
    2010
  • 资助金额:
    17.6 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

High Dimensional Approximation, Learning, and Uncertainty
高维近似、学习和不确定性
  • 批准号:
    DP240100769
  • 财政年份:
    2024
  • 资助金额:
    $ 29.07万
  • 项目类别:
    Discovery Projects
Approximation theory of structured neural networks
结构化神经网络的逼近理论
  • 批准号:
    DP240101919
  • 财政年份:
    2024
  • 资助金额:
    $ 29.07万
  • 项目类别:
    Discovery Projects
Approximation properties in von Neumann algebras
冯·诺依曼代数中的近似性质
  • 批准号:
    2400040
  • 财政年份:
    2024
  • 资助金额:
    $ 29.07万
  • 项目类别:
    Standard Grant
Approximation of transport maps from local and non-local Monge-Ampere equations
根据局部和非局部 Monge-Ampere 方程近似输运图
  • 批准号:
    2308856
  • 财政年份:
    2023
  • 资助金额:
    $ 29.07万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Data Driven Modeling and Analysis of Energy Conversion Systems -- Manifold Learning and Approximation
合作研究:CPS:媒介:能量转换系统的数据驱动建模和分析——流形学习和逼近
  • 批准号:
    2223987
  • 财政年份:
    2023
  • 资助金额:
    $ 29.07万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Data Driven Modeling and Analysis of Energy Conversion Systems -- Manifold Learning and Approximation
合作研究:CPS:媒介:能量转换系统的数据驱动建模和分析——流形学习和逼近
  • 批准号:
    2223985
  • 财政年份:
    2023
  • 资助金额:
    $ 29.07万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Data Driven Modeling and Analysis of Energy Conversion Systems -- Manifold Learning and Approximation
合作研究:CPS:媒介:能量转换系统的数据驱动建模和分析——流形学习和逼近
  • 批准号:
    2223986
  • 财政年份:
    2023
  • 资助金额:
    $ 29.07万
  • 项目类别:
    Standard Grant
Lp-Approximation Properties, Multipliers, and Quantized Calculus
Lp 近似属性、乘子和量化微积分
  • 批准号:
    2247123
  • 财政年份:
    2023
  • 资助金额:
    $ 29.07万
  • 项目类别:
    Standard Grant
Development of a novel best approximation theory with applications
开发一种新颖的最佳逼近理论及其应用
  • 批准号:
    DP230102079
  • 财政年份:
    2023
  • 资助金额:
    $ 29.07万
  • 项目类别:
    Discovery Projects
A Lebesgue Integral based Approximation for Language Modelling
基于勒贝格积分的语言建模近似
  • 批准号:
    EP/X019063/1
  • 财政年份:
    2023
  • 资助金额:
    $ 29.07万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了