MULTI-SCALE TWO-PHASE WAVE-STRUCTURE INTERACTION USING ADAPTIVE SPH COUPLED WITH QALE-FEM
使用自适应 SPH 与 QALE-FEM 耦合的多尺度两相波结构相互作用
基本信息
- 批准号:EP/L014890/1
- 负责人:
- 金额:$ 43.08万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2014
- 资助国家:英国
- 起止时间:2014 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Considerable advances have been made in the modelling of wave hydrodynamics and wave-body interaction in recent years. Wave diffraction analysis based on potential flow theory is now standard with linear and second-order theory in the frequency domain. In the time domain for fully nonlinear analysis arguably the most versatile, robust and efficient method is the arbitrary Lagrange-Euler finite-element method (QALE-FEM) approach for potential flow, capable of covering 3-D domains of say 20x20 wavelengths in plan with 20 wave periods on overnight runs on an 8-core processor. However, the method is single-phase with the physical limitation of an irrotational, inviscid fluid. Extreme loads and impacts or slam generally involve breaking wave conditions where multi-phase (air-water-solid) behaviour is significant. An alternative approach is required for violent flows with complex physics local to a structure or body. Progress with volume-of-fluid (VOF) methods has been applied to wave interactions with columns and coastal structures. However, the most significant advances for violent wave-structure have recently been made using the Smoothed Particle Hydrodynamics (SPH) method. SPH has been an area of promising research for some years due to its versatility in dealing with free-surface flows with overturning, splashing and body interaction. Recent problems with numerical convergence, stability and very noisy pressure have been resolved for single-phase flow through EPSRC funded work through an incompressible, divergence-free, formulation (ISPH). Numerical convergence with high pressure accuracy for several impulsive test cases has been demonstrated with generalised shifting algorithms for eliminating instabilities within the particle distributions. Clearly, predicting high pressure accurately is vital for fluid-body interaction. This has been extended to two-phase flow with the incorporation of a compressible air phase with good results in preliminary tests. The main disadvantage of SPH is the computational time due to the large number of particles required in 3-D, O(10 million - 1 billion), the large number of neighbour interactions per particle, and the relatively small time steps needed. Variable particle sizing and efficient neighbour searching do not enable domain dimensions of many wavelengths in 3-D to be run for many wave periods as generally required for extreme wave-body interaction. Building on previous work, in this project ISPH and QALE-FEM for wave-structure interaction will be developed in parallel and then coupled achieving efficient computation in two ways:1. Dynamic adaptive particle sizing, satisfying minimum error conditions or resolving some physical characteristic, e.g. density or vorticity. Promising preliminary results have been obtained in 2-D by the proposers.2. Coupling an inner SPH domain with an outer nonlinear potential flow domain using an efficient solution method such as QALE-FEM. Dynamic adaptive particle sizing should also be used in the SPH domain.
近年来,在波浪流体力学和波体相互作用的模拟方面取得了长足的进展。基于势流理论的波浪绕射分析现在是标准的频域线性和二阶理论。在完全非线性分析的时间域中,最通用、最稳健和最有效的方法是势流的任意拉格朗日-欧拉有限元方法(QALE-FEM),该方法能够在8核处理器上过夜运行,覆盖计划中的三维区域,例如20×20个波长和20个波周期。然而,该方法是单相的,具有无旋转、无粘性流体的物理限制。极端载荷和冲击或猛烈撞击通常涉及破坏波浪条件,其中多相(空气-水-固体)行为显著。对于结构或身体局部具有复杂物理特性的剧烈流动,需要另一种方法。流体体积(VOF)方法的进展已应用于波浪与柱子和海岸结构物的相互作用。然而,最近利用光滑粒子流体动力学(SPH)方法对剧烈波浪结构的研究取得了最显著的进展。多年来,SPH一直是一个有前途的研究领域,因为它在处理具有倾覆、飞溅和身体相互作用的自由表面流动方面具有多功能性。通过一种不可压缩、无发散的公式(ISPH),单相流通过EPSRC资助的工作解决了最近的数值收敛、稳定性和非常嘈杂的压力问题。用广义移位算法消除了颗粒分布中的不稳定性,证明了几个脉冲试验算例具有高压力精度的数值收敛。显然,准确预测高压对于流体-物体相互作用至关重要。这已扩展到两相流,加入了可压缩空气相,在初步试验中取得了良好的结果。SPH的主要缺点是在3-D,O(1000万-10亿)中需要大量的粒子,每个粒子需要大量的邻域相互作用,并且所需的时间步长相对较小,因此计算时间较长。可变的粒子大小和有效的邻域搜索不能像极端的波体相互作用通常所要求的那样,在3-D中使许多波长的域维度运行许多波周期。在前人工作的基础上,本文将波-结构相互作用的ISPH和QALE-有限元并行发展,然后耦合起来,通过两种方式实现有效的计算:1.动态自适应颗粒尺寸,满足最小误差条件或解决某些物理特性,如密度或涡度。这些提出者已经在2-D中获得了有希望的初步结果。使用一种有效的求解方法,如QALE-FEM,将内SPH区域与外部非线性势流区域耦合。在SPH领域中也应该使用动态自适应颗粒大小。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the Coupling of Incompressible SPH with a Finite Element Potential Flow Solver for Nonlinear Free-Surface Flows
- DOI:10.17736/ijope.2018.ak28
- 发表时间:2018-09
- 期刊:
- 影响因子:0.8
- 作者:G. Fourtakas;P. Stansby;B. Rogers;S. Lind;S. Yan;Q. Ma
- 通讯作者:G. Fourtakas;P. Stansby;B. Rogers;S. Lind;S. Yan;Q. Ma
Incompressible-compressible flows with a transient discontinuous interface using smoothed particle hydrodynamics (SPH)
- DOI:10.1016/j.jcp.2015.12.005
- 发表时间:2016-03
- 期刊:
- 影响因子:0
- 作者:S. Lind;P. Stansby;B. Rogers
- 通讯作者:S. Lind;P. Stansby;B. Rogers
Local uniform stencil (LUST) boundary condition for arbitrary 3-D boundaries in parallel smoothed particle hydrodynamics (SPH) models
- DOI:10.1016/j.compfluid.2019.06.009
- 发表时间:2019-08
- 期刊:
- 影响因子:2.8
- 作者:G. Fourtakas;J. Dominguez;R. Vacondio;B. Rogers
- 通讯作者:G. Fourtakas;J. Dominguez;R. Vacondio;B. Rogers
High-order Eulerian incompressible smoothed particle hydrodynamics with transition to Lagrangian free-surface motion
- DOI:10.1016/j.jcp.2016.08.047
- 发表时间:2016-12-01
- 期刊:
- 影响因子:4.1
- 作者:Lind, S. J.;Stansby, P. K.
- 通讯作者:Stansby, P. K.
INCOMPRESSIBLE SMOOTHED PARTICLE HYDRODYNAMICS (ISPH) MODELLING OF BREAKWATER OVERTOPPING
防波堤漫溢的不可压缩平滑粒子流体动力学 (ISPH) 建模
- DOI:10.9753/icce.v34.waves.6
- 发表时间:2014
- 期刊:
- 影响因子:0
- 作者:Rogers B
- 通讯作者:Rogers B
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benedict Rogers其他文献
Benedict Rogers的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Benedict Rogers', 18)}}的其他基金
Newton Fund: Numerical simulation of soil erosion using Smoothed Particle Hydrodynamics (SPH)
牛顿基金:使用平滑粒子流体动力学 (SPH) 进行土壤侵蚀数值模拟
- 批准号:
EP/M029786/1 - 财政年份:2015
- 资助金额:
$ 43.08万 - 项目类别:
Research Grant
EFFICIENT COMPUTATION FOR GENERALISED FREE-SURFACE MULTI-PHASE SMOOTHED PARTICLE HYDRODYNAMICS (SPH) USING GRAPHICS PROCESSING UNITS (GPUs)
使用图形处理单元 (GPU) 高效计算广义自由表面多相平滑粒子流体力学 (SPH)
- 批准号:
EP/H003045/1 - 财政年份:2010
- 资助金额:
$ 43.08万 - 项目类别:
Research Grant
相似国自然基金
基于热量传递的传统固态发酵过程缩小(Scale-down)机理及调控
- 批准号:22108101
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于Multi-Scale模型的轴流血泵瞬变流及空化机理研究
- 批准号:31600794
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
针对Scale-Free网络的紧凑路由研究
- 批准号:60673168
- 批准年份:2006
- 资助金额:25.0 万元
- 项目类别:面上项目
相似海外基金
Mechanism of two phase thermo-fluid behavior in porous media and its high accuracy numerical analysis based on multi-scale effect
多孔介质中两相热流体行为机理及其基于多尺度效应的高精度数值分析
- 批准号:
19KK0109 - 财政年份:2019
- 资助金额:
$ 43.08万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
Two-Dimensional Pre-Assembled Multi-Scale Brownian Soft Matter
二维预组装多尺度布朗软物质
- 批准号:
1905347 - 财政年份:2019
- 资助金额:
$ 43.08万 - 项目类别:
Standard Grant
MULTI-SCALE TWO-PHASE WAVE-STRUCTURE INTERACTION USING ADAPTIVE SPH COUPLED WITH QALE-FEM
使用自适应 SPH 与 QALE-FEM 耦合的多尺度两相波结构相互作用
- 批准号:
EP/L014661/1 - 财政年份:2014
- 资助金额:
$ 43.08万 - 项目类别:
Research Grant
Developing Multi-Scale Technologies for Two-Dimensional Metal Nanoparticle Superlattice Sheets
开发二维金属纳米粒子超晶格片的多尺度技术
- 批准号:
DP140100052 - 财政年份:2014
- 资助金额:
$ 43.08万 - 项目类别:
Discovery Projects
MULTI-SCALE TWO-PHASE WAVE-STRUCTURE INTERACTION USING ADAPTIVE SPH COUPLED WITH QALE-FEM
使用自适应 SPH 与 QALE-FEM 耦合的多尺度两相波结构相互作用
- 批准号:
EP/L01467X/1 - 财政年份:2014
- 资助金额:
$ 43.08万 - 项目类别:
Research Grant
Bubble motion control using a functional plate and comprehensive understanding of two-phase heat transfer mechanism through multi-scale analysis
使用功能板控制气泡运动并通过多尺度分析全面了解两相传热机理
- 批准号:
25420160 - 财政年份:2013
- 资助金额:
$ 43.08万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Multi-scale, two-phase flow in complex coal seam systems
复杂煤层系统中的多尺度两相流
- 批准号:
LP120100662 - 财政年份:2012
- 资助金额:
$ 43.08万 - 项目类别:
Linkage Projects
Multi-scale analysis of two-phase flow in porous media with complex heterogeneities
复杂非均质性多孔介质中两相流的多尺度分析
- 批准号:
142009460 - 财政年份:2009
- 资助金额:
$ 43.08万 - 项目类别:
Research Grants
Using and Extending Two Newly Developed Multi-scale Modeling Methods to Study Novel Nano-Device Operation
使用和扩展两种新开发的多尺度建模方法来研究新型纳米器件操作
- 批准号:
0727890 - 财政年份:2007
- 资助金额:
$ 43.08万 - 项目类别:
Standard Grant
Structure and Stability of Multi-Component Amorphous Alloy Separated into Two Phases on Nanometer Scale for Hydrogen Strage.
用于氢存储的纳米级两相多组分非晶合金的结构和稳定性。
- 批准号:
62550513 - 财政年份:1987
- 资助金额:
$ 43.08万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)