Advanced Ultrasonic Monitoring for Concentrated Dispersions and Nanoparticle Materials

用于浓缩分散体和纳米颗粒材料的先进超声波监测

基本信息

  • 批准号:
    EP/L018780/1
  • 负责人:
  • 金额:
    $ 12.45万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2014
  • 资助国家:
    英国
  • 起止时间:
    2014 至 无数据
  • 项目状态:
    已结题

项目摘要

When a plane ultrasonic wave (a sound wave at higher frequency than humans can hear) travels through a fluid which has particles or droplets suspended in it, the particles/droplets scatter the wave by sending some of it in other directions. A very similar effect produces a rainbow when sunlight is scattered by water droplets in the air. With ultrasonic waves, which are compressional waves, scattering by the particles can also convert some of the wave into other wave types, namely thermal and shear waves. These processes take energy away from the ultrasonic wave which causes a reduction in its amplitude. By measuring the attenuation (loss in amplitude) and the wave speed for an ultrasonic wave travelling through the suspensions, we can find out the concentration of particles, how big they are, or something about their properties e.g. their density. Since these sorts of materials (suspensions of particles) have many uses e.g. foods, healthcare products, agrochemicals, drug delivery systems, a way of measuring their properties is a crucial element of a production process and of great importance in a number of industries. In order to understand the measurements we make, we need to use a model, a set of equations and calculations which tell us how the properties of the particles and fluid affect the loss of amplitude and speed of the wave. The model we use has two parts: a multiple scattering theory, and a model for the scattering from a single particle. For some time, the model we used has been limited because it made some approximations about the two other wave types (the thermal and shear waves) which are produced at the particles; it assumed that those waves die away in a very short distance, and do not have any effect on the particles nearby. Although they do die away in a very short distance, they can affect the neighbouring particles when the suspension is very concentrated (i.e. there are a lot of particles in a small space). The thermal and shear waves themselves can be scattered by particles nearby and may be partly converted back into a compressional wave (an ultrasonic wave). This means we did not lose as much of the energy from the compressional wave as we thought. The process of wave conversion and re-conversion is referred to as multi-mode scattering and for many years, its effect has been ignored because we did not have a suitable model to calculate it. Last year, a group of researchers at Le Havre (France), published a new version of the multiple scattering theory, which does include this multi-mode scattering, over 40 years after the original multiple scattering model was published. This is a useful development, but at the moment the model exists as a set of rather abstract mathematical equations which include many terms which we do not yet know how to calculate. What we propose to do is to transform this model into a form which enables online ultrasonic monitoring in a pipe. We will work out which parts of those equations make the most difference to the measured ultrasonic speed and attenuation (energy loss) in typical suspensions. We will develop some new models for scattering by a single particle so that we can work out how much energy is converted between wave modes. These models will take the form of sets of equations which will be solved by computer (numerical models), and also some forms which can be written directly in mathematical notation (analytical models). To demonstrate that the models developed in the project are valid, experimental measurements will be made of the attenuation and wave speed in suspensions at relatively high concentrations 10-30% by volume, and for a range of particle sizes. The outcomes of the project will be a model in a form which can be used in online ultrasonic instrumentation. This will enable ultrasonics to be used with confidence as a process monitoring technique in a wide range of industrial contexts.
当平面超声波(一种频率高于人类听觉的声波)穿过悬浮在其中的颗粒或液滴时,颗粒/液滴通过向其他方向发送一些声波而使声波散射。当阳光被空气中的水滴散射时,也会产生非常相似的彩虹。超声波是纵波,通过粒子的散射也可以将一些波转化为其他波类型,即热波和横波。这些过程从超声波中吸收能量,从而使其振幅减小。通过测量超声波通过悬浮液的衰减(振幅损失)和波速,我们可以发现颗粒的浓度,它们有多大,或者它们的一些特性,例如密度。由于这些类型的材料(颗粒悬浮液)有许多用途,例如食品,保健品,农用化学品,药物输送系统,因此测量其性质的方法是生产过程中的关键因素,在许多行业中非常重要。为了理解我们所做的测量,我们需要使用一个模型,一组方程和计算来告诉我们粒子和流体的性质如何影响波的振幅和速度的损失。我们使用的模型有两个部分:一个是多重散射理论,另一个是单个粒子的散射模型。一段时间以来,我们使用的模型受到了限制,因为它对在粒子处产生的另外两种波类型(热波和横波)进行了一些近似;它假设这些波在很短的距离内消失,并且对附近的粒子没有任何影响。虽然它们会在很短的距离内消失,但当悬浮液非常集中时(即小空间内有大量颗粒),它们会影响邻近的颗粒。热波和横波本身可以被附近的粒子散射,并可能部分转换回纵波(超声波)。这意味着我们并没有像我们想象的那样从纵波中损失那么多能量。波的转换和再转换过程被称为多模散射,多年来,由于没有合适的模型来计算它,它的作用被忽略了。去年,法国勒阿弗尔的一组研究人员发表了一个新版本的多重散射理论,在最初的多重散射模型发表40多年后,该理论确实包括了这种多模式散射。这是一个有用的发展,但目前这个模型是作为一组相当抽象的数学方程存在的,其中包括许多我们还不知道如何计算的项。我们打算做的是将这个模型转换成一种形式,可以在管道中进行在线超声波监测。我们将计算出这些方程的哪些部分对典型悬架中测量的超声波速度和衰减(能量损失)影响最大。我们将为单个粒子的散射发展一些新的模型,这样我们就可以计算出在不同的波模式之间转换了多少能量。这些模型将采用可由计算机求解的方程组的形式(数值模型),以及一些可以直接用数学符号表示的形式(分析模型)。为了证明该项目中开发的模型是有效的,将对相对高浓度10-30%体积的悬浮液中的衰减和波速进行实验测量,并对一系列粒径进行测量。该项目的成果将是一个模型的形式,可用于在线超声仪器。这将使超声波能够在广泛的工业环境中作为一种过程监控技术而充满信心地使用。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Shear-mediated contributions to the effective properties of soft acoustic metamaterials including negative index.
  • DOI:
    10.1038/srep18562
  • 发表时间:
    2015-12-21
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Forrester DM;Pinfield VJ
  • 通讯作者:
    Pinfield VJ
Ultrasound propagation in concentrated random dispersions of spherical particles: Thermal- and shear-mediated contributions to multiple scattering
球形颗粒集中随机分散体中的超声传播:热和剪切介导对多重散射的贡献
Characterisation of colloidal dispersions using ultrasound spectroscopy and multiple-scattering theory inclusive of shear-wave effects
  • DOI:
    10.1016/j.cherd.2016.08.008
  • 发表时间:
    2016-10-01
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Forrester, D. M.;Huang, J.;Pinfield, V. J.
  • 通讯作者:
    Pinfield, V. J.
Ultrasound Propagation in Concentrated Suspensions: Shear-mediated Contributions to Multiple Scattering
浓悬浮液中的超声传播:剪切介导的多重散射贡献
  • DOI:
    10.1016/j.phpro.2015.08.135
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pinfield V
  • 通讯作者:
    Pinfield V
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Valerie Pinfield其他文献

Valerie Pinfield的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Valerie Pinfield', 18)}}的其他基金

Ultrasonic propagation in complex media: correlated spatial distributions and multiple dispersed phases
复杂介质中的超声波传播:相关空间分布和多个分散相
  • 批准号:
    EP/M026302/1
  • 财政年份:
    2015
  • 资助金额:
    $ 12.45万
  • 项目类别:
    Research Grant

相似海外基金

Integrated Ultrasonic Sensors for In-Situ Stent, Graft, or Stent-Graft Patency Monitoring
用于原位支架、移植物或支架移植物通畅监测的集成超声波传感器
  • 批准号:
    2885961
  • 财政年份:
    2023
  • 资助金额:
    $ 12.45万
  • 项目类别:
    Studentship
USES of novel Ultrasonic and Seismic Embedded Sensors for the non-destructive evaluation and structural health monitoring of critical infrastructure
使用新型超声波和地震嵌入式传感器对关键基础设施进行无损评估和结构健康监测
  • 批准号:
    EP/X027392/1
  • 财政年份:
    2023
  • 资助金额:
    $ 12.45万
  • 项目类别:
    Research Grant
Ultrasonic Instrumented Wheelset for Wheel-Rail Friction Management and Contact Monitoring : Turning a Revenue Service Vehicle to a High-Speed VTI Measurement System
用于轮轨摩擦管理和接触监测的超声波仪表轮组:将税务服务车辆转变为高速 VTI 测量系统
  • 批准号:
    10040500
  • 财政年份:
    2023
  • 资助金额:
    $ 12.45万
  • 项目类别:
    Collaborative R&D
Development and Validation of a Wearable Ultrasonic Sensor for Noninvasive Beat-to-beat Blood Pressure Monitoring
用于无创逐次血压监测的可穿戴超声波传感器的开发和验证
  • 批准号:
    10699861
  • 财政年份:
    2023
  • 资助金额:
    $ 12.45万
  • 项目类别:
Automated analysis approaches for Structural Health Monitoring on aerospace primary structure with ultrasonic and electromagnetic sensor arrays
利用超声波和电磁传感器阵列对航空航天主结构进行结构健康监测的自动分析方法
  • 批准号:
    2737813
  • 财政年份:
    2022
  • 资助金额:
    $ 12.45万
  • 项目类别:
    Studentship
STTR Phase I: Highly Responsive Implantable Ultrasonic Sensor for Long-Term Hemodynamic Monitoring
STTR 第一阶段:用于长期血流动力学监测的高响应植入式超声波传感器
  • 批准号:
    2213838
  • 财政年份:
    2022
  • 资助金额:
    $ 12.45万
  • 项目类别:
    Standard Grant
A Wearable Ultrasonic System for Automatic, Continuous, and Noninvasive Monitoring of Central Blood Pressure
用于自动、连续、无创监测中心血压的可穿戴超声波系统
  • 批准号:
    10631219
  • 财政年份:
    2022
  • 资助金额:
    $ 12.45万
  • 项目类别:
Continuous monitoring of skeletal muscle contraction using wearable ultrasonic sensor
使用可穿戴超声波传感器连续监测骨骼肌收缩
  • 批准号:
    573581-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 12.45万
  • 项目类别:
    University Undergraduate Student Research Awards
A Wearable Ultrasonic System for Automatic, Continuous, and Noninvasive Monitoring of Central Blood Pressure
用于自动、连续、无创监测中心血压的可穿戴超声波系统
  • 批准号:
    10504949
  • 财政年份:
    2022
  • 资助金额:
    $ 12.45万
  • 项目类别:
Development of a new adaptive spot weld controller driven by an ultrasonic monitoring system.
开发由超声波监控系统驱动的新型自适应点焊控制器。
  • 批准号:
    558341-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 12.45万
  • 项目类别:
    Alliance Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了