Fusing Semantic and Audio Technologies for Intelligent Music Production and Consumption
融合语义和音频技术实现智能音乐制作和消费
基本信息
- 批准号:EP/L019981/1
- 负责人:
- 金额:$ 662.58万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2014
- 资助国家:英国
- 起止时间:2014 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Music is probably the most pervasive of the performing arts, and perhaps, the most abused (think of your recent shopping trips!). It has tremendous power to influence our emotions, often subliminally. The advent of recording in the 19th Century made it possible to enjoy music at a time, and in a place, different from the performance. Compression, broadband and the ever increasing capacity to aggregate large collections mean that the issues confronting music consumers have totally changed in nature: equally so for professionals, such as broadcasters (playlists for radio, music for documentaries, etc.) and those at the creative heart of the process: musicians, sound engineers and producers. The recorded music industry has grappled unsuccessfully with digital technology and the rate of adoption of new technologies has been slow, ironically, mostly in fear of piracy and loss of revenue. Given the social and economic importance of music, it is vital that the industry's crisis is averted and its decline reversed. Simple semantics and metadata are already helping (for example in recommendation and sharing services) but this is just the beginning. The next generation semantic technologies that are the focus of this proposal have the power to exact the turnaround that music (and other content industries) needs but this should be established via a fundamental and principled exploration of how semantic technologies underpin music throughout the value chain.The proposal brings the very latest technologies to bear on the complete industry, end-to-end, producer to consumer, making the production process more fruitful, the consumption process more engaging, and the delivery and intermediation more automated and robust. In this project we will address 3 premises: (i) that Semantic Web technologies should be deployed throughout the content value chain from producer to consumer; (ii) that advanced signal processing should be employed in the content production phases to extract "pure" features of perceptual significance and represent these in standard vocabularies; (iii) that this combination of semantic technologies and content-derived metadata leads to advantages (and new products and services) at many points in the value chain, from recording studio to end-user (listener) devices and applications.The project will work with partners from industry - BBC R&D, Microsoft Research Cambridge and Omnifone) as well as internationally - the International Audio Labs, a joint initiative of the Fraunhofer Institute in Erlangan and the local university, and the Internet Archive, one of the world's major on-line libraries. We will engage with other universities in the UK supported by a partnership fund and via the BBC Audio Research Partnership. This long term project will foster new ways for professionals to work with music in the studio and for consumers to engage in their homes. It will support new business models that emphasise the whole experience of musical involvement, and discover ways to monetise the metadata as well as the essential content. The technologies to be researched support new ways of learning (about and to play) music as well as new ways of teaching and performing. And because the project will encompass vast quantities of music data and metadata, from heterogeneous sources, and will stress test emerging principles of big data, distributed intelligence and future generation web, it also addresses key questions of wide significance to EPSRC's ICT Programme, particularly relating to Intelligent Information Systems and Working Together.
音乐可能是最普遍的表演艺术,也许,最滥用(想想你最近的购物之旅!)。它有巨大的力量影响我们的情绪,往往是潜意识的。19世纪录音的出现使人们有可能在与表演不同的时间、地点欣赏音乐。压缩、宽带和不断增加的收集大量音乐的能力意味着音乐消费者所面临的问题在性质上已经完全改变:对于专业人士来说也是如此,例如广播公司(广播节目的播放列表,纪录片的音乐等)。以及那些处于创作过程核心的人:音乐家、音响工程师和制作人。唱片业一直未能成功地与数字技术作斗争,具有讽刺意味的是,新技术的采用速度一直很慢,主要是担心盗版和收入损失。鉴于音乐的社会和经济重要性,避免该行业的危机并扭转其衰落至关重要。简单的语义和元数据已经有所帮助(例如在推荐和共享服务中),但这仅仅是个开始。下一代语义技术是这项建议的重点,它有能力实现音乐的转变,(和其他内容行业)需要,但这应该通过对语义技术如何支撑整个价值链的基本和原则性探索来建立。该提案将最新技术应用于整个行业,端到端,生产者到消费者,使生产过程更富有成效,消费过程更有吸引力,交付和中介更加自动化和强大。在这个项目中,我们将解决3个前提:(i)语义网技术应部署在整个内容价值链从生产者到消费者;(ii)先进的信号处理应采用在内容生产阶段提取“纯”的感知意义的功能,并表示在标准词汇表中;(iii)语义技术和内容衍生元数据的这种结合带来了优势(以及新产品和服务)在价值链的许多点上,从录音棚到最终用户(收听者)设备和应用程序。该项目将与来自行业的合作伙伴- BBC研发,微软研究剑桥和Omnifone)以及国际上的合作伙伴-国际音频实验室,这是位于埃尔兰根的弗劳恩霍夫研究所和当地大学的联合倡议,以及世界主要在线图书馆之一的互联网档案馆。我们将与英国的其他大学合作,通过合作基金和BBC音频研究合作伙伴关系提供支持。这个长期项目将为专业人士在工作室处理音乐和消费者在家中参与创造新的方式。它将支持新的商业模式,强调音乐参与的整体体验,并发现将元数据和基本内容货币化的方法。待研究的技术支持学习(关于和演奏)音乐的新方法以及教学和表演的新方法。由于该项目将涵盖来自不同来源的大量音乐数据和元数据,并将对大数据、分布式智能和下一代网络的新兴原则进行压力测试,因此它还解决了对EPSRC的ICT计划具有广泛意义的关键问题,特别是与智能信息系统和协同工作有关的问题。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An AI-Based Design Framework to Support Musicians' Practices
支持音乐家实践的基于人工智能的设计框架
- DOI:10.1145/3243274.3275381
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Avila J
- 通讯作者:Avila J
The Semantic Web - ISWC 2016 - 15th International Semantic Web Conference, Kobe, Japan, October 17-21, 2016, Proceedings, Part II
语义网 - ISWC 2016 - 第 15 届国际语义网会议,日本神户,2016 年 10 月 17-21 日,会议记录,第二部分
- DOI:10.1007/978-3-319-46547-0_1
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Allik A
- 通讯作者:Allik A
myMoodplay: an Interactive Mood-Based Music Discovery App.
myMoodplay:一款基于情绪的交互式音乐发现应用程序。
- DOI:
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Allik, A.,
- 通讯作者:Allik, A.,
MusicWeb: music discovery with open linked semantic metadata
MusicWeb:具有开放链接语义元数据的音乐发现
- DOI:
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Allik, A.,
- 通讯作者:Allik, A.,
MUSICWEB : SIMILARITY MODELLING STRATEGIES FOR ARTIST DISCOVERY
MUSICWEB:艺术家发现的相似性建模策略
- DOI:
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Alo Allik;Mariano Mora;György Fazekas;M. Sandler
- 通讯作者:M. Sandler
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Sandler其他文献
USING SEMANTIC LAYER PROJECTION FOR ENHANCING MUSIC MOOD PREDICTION WITH AUDIO FEATURES
使用语义层投影通过音频特征增强音乐情绪预测
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Pasi Saari;T. Eerola;Gy¨orgy Fazekas;Mark Sandler - 通讯作者:
Mark Sandler
Computing ecosystems: neural networks and embedded hardware platforms
计算生态系统:神经网络和嵌入式硬件平台
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Teresa Pelinski;Franco Caspe;Andrew McPherson;Mark Sandler - 通讯作者:
Mark Sandler
Identifying Master Violinists Using Note-level Audio Features
使用音符级音频特征识别小提琴大师
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Yudong Zhao;Gy¨orgy Fazekas;Mark Sandler - 通讯作者:
Mark Sandler
Handwritten digits recognition using Hough transform and neural networks
使用霍夫变换和神经网络进行手写数字识别
- DOI:
10.1109/iscas.1996.541596 - 发表时间:
1996 - 期刊:
- 影响因子:0
- 作者:
G. Castellano;Mark Sandler - 通讯作者:
Mark Sandler
: Digital Music Research Network Workshop Proceedings
:数字音乐研究网络研讨会论文集
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Tom Mudd;Simon Holland;Paul Mulholland;Mina Mounir;T. V. Waterschoot;Elio Quinton;Ken O’Hanlon;Simon Dixon;Mark Sandler;Ryan Groves;Darrell Conklin;David M. Weigl;Dr. A. V. Beeston;Dr. E. D. Dobson;Lucy Cheesman - 通讯作者:
Lucy Cheesman
Mark Sandler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Sandler', 18)}}的其他基金
Semantic Media: a new paradigm for navigable content for the 21st Century
语义媒体:21 世纪可导航内容的新范式
- 批准号:
EP/J010375/1 - 财政年份:2012
- 资助金额:
$ 662.58万 - 项目类别:
Research Grant
3D Audio Interface for Exploration of Audio Collections
用于探索音频收藏的 3D 音频接口
- 批准号:
EP/H008160/1 - 财政年份:2010
- 资助金额:
$ 662.58万 - 项目类别:
Research Grant
Doctoral Training Centre in Digital Music and Media for the Creative Economy
创意经济数字音乐与媒体博士培训中心
- 批准号:
EP/G03723X/1 - 财政年份:2009
- 资助金额:
$ 662.58万 - 项目类别:
Training Grant
OMRAS2: A Distributed Research Environment for Music Informatics and Computational Musicology
OMRAS2:音乐信息学和计算音乐学的分布式研究环境
- 批准号:
EP/E017614/1 - 财政年份:2007
- 资助金额:
$ 662.58万 - 项目类别:
Research Grant
相似海外基金
SMILE - Semantic Modelling of Intent through Large-language Evaluations
SMILE - 通过大语言评估进行意图语义建模
- 批准号:
10097766 - 财政年份:2024
- 资助金额:
$ 662.58万 - 项目类别:
Collaborative R&D
6G Goal-Oriented AI-enabled Learning and Semantic Communication Networks (6G Goals)
6G目标导向的人工智能学习和语义通信网络(6G目标)
- 批准号:
10110118 - 财政年份:2024
- 资助金额:
$ 662.58万 - 项目类别:
EU-Funded
大規模農業フィールドにおける超精密ほ場管理を目的としたSemantic-SLAMの研究
大规模农田超精准田间管理的语义-SLAM研究
- 批准号:
24K07413 - 财政年份:2024
- 资助金额:
$ 662.58万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Postdoctoral Fellowship: SPRF: A Comprehensive Modeling Framework for Semantic Memory Search
博士后奖学金:SPRF:语义记忆搜索综合建模框架
- 批准号:
2313985 - 财政年份:2024
- 资助金额:
$ 662.58万 - 项目类别:
Fellowship Award
CASCADE: Computational Analysis of Semantic Change Across Different Environments
CASCADE:不同环境下语义变化的计算分析
- 批准号:
EP/Y031075/1 - 财政年份:2024
- 资助金额:
$ 662.58万 - 项目类别:
Research Grant
Bridging the meaning gap: A computational approach to semantic variation
弥合意义差距:语义变异的计算方法
- 批准号:
DP240101873 - 财政年份:2024
- 资助金额:
$ 662.58万 - 项目类别:
Discovery Projects
Mixed-methods Digital Oral History: Enfolding semantic web technologies and historical-interpretative analysis
混合方法数字口述历史:包含语义网络技术和历史解释分析
- 批准号:
AH/Y007557/1 - 财政年份:2024
- 资助金额:
$ 662.58万 - 项目类别:
Research Grant
SBIR Phase I: Face Analyzer / Semantic Search
SBIR 第一阶段:人脸分析器/语义搜索
- 批准号:
2335287 - 财政年份:2024
- 资助金额:
$ 662.58万 - 项目类别:
Standard Grant
Real-Time Pixel-Level Semantic Tracking in Retinal Microsurgery
视网膜显微外科手术中的实时像素级语义跟踪
- 批准号:
2904561 - 财政年份:2024
- 资助金额:
$ 662.58万 - 项目类别:
Studentship
EmoMap: Emotion Mapping in Semantic Space
EmoMap:语义空间中的情感映射
- 批准号:
24K21058 - 财政年份:2024
- 资助金额:
$ 662.58万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




