Parameterized Proof Complexity

参数化证明复杂性

基本信息

  • 批准号:
    EP/L024233/1
  • 负责人:
  • 金额:
    $ 12.74万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2014
  • 资助国家:
    英国
  • 起止时间:
    2014 至 无数据
  • 项目状态:
    已结题

项目摘要

Computational complexity studies the possibilities and limitations of efficient computation. Traditionally, a problem has been perceived as tractable if it admits a polynomial-time algorithm; and the class of all such problems forms the complexity class P. Conversely, a problem is hard if it is associated with a complexity class believed to be beyond the realm of tractability like NP. While the P vs NP question is one of the central questions of modern computer science and mathematics (as witnessed by its inclusion as one of the seven Millennium Prize Problems posed by the Clay Mathematics Institute in 2000), we seem to be far from a solution. However, literally thousands of problems of great practical significance from optimisation, artificial intelligence, computational biology, and many further fields are known to be NP-complete. And they desperately need to be solved for practical instances.Parameterized complexity is one of the main modern approaches that help to understand the precise border between tractability and intractability. While P vs NP colours the world of computational problems into black and white, parameterized complexity exploits additional structure of the problems and reveals a much more detailed picture. It results in algorithmic solutions for many NP-hard problems using the new concept of fixed parameter tractability (FPT). This approach has revolutionised the way we approach intractable problems today; and many classically hard problems become solvable for large classes of relevant instances.While parameterized complexity has been intensively studied during the last two decades, the concept of parameterization has been only recently transferred to proof complexity by Dantchev, Martin, and Szeider (FOCS 2007). Proof complexity studies the complexity of theorem proving: how difficult is it to construct a proof of a formal statement in a given proof system? What is the length of the shortest proof? These questions have tight relations to central problems in computational complexity and logic. Indeed, proof complexity offers one of the main approaches towards the P vs NP question via Cook's programme.This project will be a substantial contribution towards the development of the field of parameterized proof complexity. While recent findings have already proved the effectiveness of the approach, much foundational work lies ahead. Similarly as parameterized complexity provides a fine classification of running times, parameterized proof complexity offers a more fine-grained analysis of lengths of proofs. In particular, this results in FPT-size proofs for many formulas that require exponential-size proofs in the classical setting. At the same time, showing lower bounds to the size of proofs becomes much harder: firstly, because there are less candidate formulas for hardness; and secondly, because many classical techniques turn out to be ineffective.This project will develop new techniques and reassess current techniques in proof complexity and computational complexity for their applicability in parameterized proof complexity. These technical advances will be used to show strong lower bounds for parameterized proof systems where currently no non-trivial lower bounds are known. A particular system of interest is parameterized resolution with an efficient encoding of parameterized axioms.In addition to its links to complexity and logic, proof complexity is the main theoretical tool to analyse the performance of modern SAT solvers. These are algorithms with very fine-tuned implementations that successfully solve the NP-complete problem of boolean satisfiability (SAT) for large fractions of industrial instances stemming from applications as software verification or model checking. This project will develop new algorithmic approaches to SAT solving inspired by insights from parameterized proof complexity. One particular goal are parameterized algorithms that refine DPLL-based solvers.
计算复杂性研究有效计算的可能性和局限性。传统上,一个问题被认为是易处理的,如果它允许一个多项式时间算法;所有这些问题的类形成复杂性类P。虽然P vs NP问题是现代计算机科学和数学的核心问题之一(正如克莱数学研究所在2000年提出的七个千年奖问题之一所证明的那样),但我们似乎离解决方案还很远。然而,在优化、人工智能、计算生物学和许多其他领域中,成千上万个具有重大实际意义的问题都是NP完全的。参数化的复杂性是现代主要的方法之一,它有助于理解易处理性和难处理性之间的精确边界。当P vs NP将计算问题的世界渲染成黑色和白色时,参数化复杂性利用了问题的额外结构,并揭示了一个更详细的画面。它的结果在许多NP难问题的算法解决方案,使用固定参数易处理性(FPT)的新概念。这种方法已经彻底改变了我们处理棘手问题的方式;许多经典的困难问题变得可解的大类相关instance.While参数化的复杂性已经深入研究在过去的二十年中,参数化的概念已经转移到证明复杂性由Dantchev,Martin,和Szeider(FOCS 2007)。证明复杂性研究定理证明的复杂性:在给定的证明系统中构造正式陈述的证明有多难?最短证明的长度是多少?这些问题与计算复杂性和逻辑学中的中心问题有着紧密的联系。事实上,证明的复杂性提供了一个主要的方法对P与NP问题通过库克的programme. This项目将是一个重大的贡献,对参数化证明的复杂性领域的发展。虽然最近的研究结果已经证明了这种方法的有效性,但还有许多基础性工作要做。类似地,参数化复杂性提供了运行时间的精细分类,参数化证明复杂性提供了对证明长度的更细粒度的分析。特别是,这导致许多公式的FPT大小证明,这些公式在经典设置中需要指数大小证明。与此同时,证明规模的下界也变得更加困难:首先是因为硬度的候选公式较少;其次是因为许多经典技术被证明是无效的。本项目将开发新技术,并重新评估现有的证明复杂性和计算复杂性技术在参数化证明复杂性中的适用性。这些技术进步将用于显示参数化证明系统的强下界,其中目前还没有已知的非平凡下界。一个特殊的系统是参数化的解决方案与参数化公理的有效编码。除了它的复杂性和逻辑的联系,证明复杂性是主要的理论工具来分析现代SAT求解器的性能。这些算法具有非常精细的实现,成功地解决了大部分工业实例的布尔可满足性(SAT)的NP完全问题,这些实例来自软件验证或模型检查。该项目将开发新的算法方法来解决SAT问题,其灵感来自参数化证明复杂性的见解。一个特别的目标是改进基于DPLL的求解器的参数化算法。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Automata, Languages, and Programming - 42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part I
自动机、语言和编程 - 第 42 届国际学术讨论会,ICALP 2015,日本京都,2015 年 7 月 6-10 日,会议记录,第一部分
  • DOI:
    10.1007/978-3-662-47672-7_15
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Beyersdorff O
  • 通讯作者:
    Beyersdorff O
Understanding Gentzen and Frege Systems for QBF
了解 QBF 的 Gentzen 和 Frege 系统
  • DOI:
    10.1145/2933575.2933597
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Beyersdorff O
  • 通讯作者:
    Beyersdorff O
Feasible Interpolation for QBF Resolution Calculi
QBF分辨率计算的可行插值
  • DOI:
    10.48550/arxiv.1611.01328
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Beyersdorff O
  • 通讯作者:
    Beyersdorff O
A game characterisation of tree-like Q-Resolution size
  • DOI:
    10.1016/j.jcss.2016.11.011
  • 发表时间:
    2019-09-01
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Beyersdorff, Olaf;Chew, Leroy;Sreenivasaiah, Karteek
  • 通讯作者:
    Sreenivasaiah, Karteek
Frege Systems for Quantified Boolean Logic
  • DOI:
    10.1145/3381881
  • 发表时间:
    2020-05-01
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Beyersdorff, Olaf;Bonacina, Ilario;Pich, Jan
  • 通讯作者:
    Pich, Jan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Olaf Beyersdorff其他文献

The Riis Complexity Gap for QBF Resolution
QBF 解析的 Riis 复杂性差距
QBFFam: A Tool for Generating QBF Families from Proof Complexity
QBFFam:从证明复杂性生成 QBF 族的工具
Relating size and width in variants of Q-resolution
关联 Q 分辨率变体中的尺寸和宽度
  • DOI:
    10.1016/j.ipl.2018.05.005
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Clymo;Olaf Beyersdorff
  • 通讯作者:
    Olaf Beyersdorff
Strong (D)QBF Dependency Schemes via Implication-free Resolution Paths
通过无蕴涵解析路径的强 (D)QBF 依赖方案
The Strength of Parameterized Tree-like Resolution
参数化树状分辨率的优势
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Olaf Beyersdorff
  • 通讯作者:
    Olaf Beyersdorff

Olaf Beyersdorff的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Towards a Unified Theory of Proof and Circuit Complexity
走向证明和电路复杂性的统一理论
  • 批准号:
    RGPIN-2021-03036
  • 财政年份:
    2022
  • 资助金额:
    $ 12.74万
  • 项目类别:
    Discovery Grants Program - Individual
Towards a Unified Theory of Proof and Circuit Complexity
走向证明和电路复杂性的统一理论
  • 批准号:
    RGPAS-2021-00032
  • 财政年份:
    2022
  • 资助金额:
    $ 12.74万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Algorithm Lower Bounds via Proof Complexity
通过证明复杂性确定算法下界
  • 批准号:
    569525-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 12.74万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Towards a Unified Theory of Proof and Circuit Complexity
走向证明和电路复杂性的统一理论
  • 批准号:
    RGPAS-2021-00032
  • 财政年份:
    2021
  • 资助金额:
    $ 12.74万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Towards a Unified Theory of Proof and Circuit Complexity
走向证明和电路复杂性的统一理论
  • 批准号:
    RGPIN-2021-03036
  • 财政年份:
    2021
  • 资助金额:
    $ 12.74万
  • 项目类别:
    Discovery Grants Program - Individual
Towards a Unified Theory of Proof and Circuit Complexity
走向证明和电路复杂性的统一理论
  • 批准号:
    DGECR-2021-00110
  • 财政年份:
    2021
  • 资助金额:
    $ 12.74万
  • 项目类别:
    Discovery Launch Supplement
New Directions in Proof Complexity and Communication Complexity
证明复杂性和通信复杂性的新方向
  • 批准号:
    228106-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 12.74万
  • 项目类别:
    Discovery Grants Program - Individual
Exploring proof complexity of cutting planes extensions
探索切割平面扩展的证明复杂性
  • 批准号:
    483248-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 12.74万
  • 项目类别:
    University Undergraduate Student Research Awards
New Directions in Proof Complexity and Communication Complexity
证明复杂性和通信复杂性的新方向
  • 批准号:
    429612-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 12.74万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Proof complexity of matrix algebra
证明矩阵代数的复杂性
  • 批准号:
    249895-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 12.74万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了