Dislocation-Microstructure Interaction at a Crack Tip - In Search of a Driving Force for Short Crack Growth

裂纹尖端的位错-微观结构相互作用 - 寻找短裂纹扩展的驱动力

基本信息

  • 批准号:
    EP/M000966/1
  • 负责人:
  • 金额:
    $ 51.18万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2014
  • 资助国家:
    英国
  • 起止时间:
    2014 至 无数据
  • 项目状态:
    已结题

项目摘要

Nickel-based superalloys are particularly used in applications involving high temperatures and stresses, such as the critical gas-turbine blades and discs in aerospace and power-generation industries. The behaviour of short cracks in nickel superalloys is of particular importance for component design and life prediction, as a large proportion of service life is spent in the growth of small cracks before final failure. Due to the strong influence of local microstructure and heterogeneous stress/strain fields, short cracks are known to grow anomalously under fatigue and tend to exhibit high, irregular and scattered growth rates. The physical driving force for short crack growth is still not well understood yet despite intensive research effort, mainly due to the limited understanding of crack-tip behaviour.This proposal aims to investigate the fundamental deformation mechanism at the tip of a short crack for nickel-based superalloys under fatigue at a range of temperatures. The research will focus on the influence of evolving local plasticity, induced by dislocation dynamics at the crack tip, on short crack growth. The interaction between dislocation and material microstructure is the major source for heterogeneous plasticity and internal stress concentration, leading to initiation and growth of short cracks. Short crack growth testing in a controlled environment will be carried out to study the anomalous behaviour of short crack growth in these alloys under fatigue, which is the expertise of UoS. Temperature will be varied in order to observe the critical effect of temperature change on the slip behaviour near the crack tip. Following crack growth tests, post-mortem transmission-electron-microscopy analyses of crack-tip zone will be performed to reveal the detailed mechanisms for nucleation and multiplication of dislocations, pile-up and penetration of dislocations at phase/grain boundaries and the influence of grain misorientations on dislocation behaviour. In particular, match-stick samples will be extracted from the crack-tip fracture process zone of fatigue-tested specimens to allow in-situ measurements of crack tip deformation under fatigue, which are the established techniques at UoM. In this case, high resolution digital image correlation, with the assistance of grain orientation mapping and scanning-electron-microscopy imaging of gold remodelled surfaces, will be used to quantify shear strain in slip traces formed near the crack tip during fatigue loading. In addition, high energy synchrotron X-ray diffraction studies will be carried out to measure the elastic strain response and load transfer between different phases around the crack tip, which will provide insight regarding the penetration of dislocations into the gamma-prime precipitates.To physically simulate the material plasticity behaviour, a three-dimensional discrete-dislocation-dynamics (DDD) approach will be developed to model the interaction between dislocations and material microstructures, which is the strength of LU, based on experimental results. The DDD model will be interfaced with viscoplasticity and crystal plasticity models, and further applied to investigate the role of dislocation dynamics in depicting short crack growth. A multi-scale finite element method will be established for the crack-tip deformation analyses, which aims to identify a micromechanics-based driving force for short crack growth. Computational simulations will be thoroughly validated against local strain measurements (at both mesoscale and microscale), in-situ and post-mortem measurements as well as X-ray tomography of extracted match-stick samples. The ultimate goal is to deliver an efficient finite element procedure to predict short crack growth, with full validation against the experimental data, for end users.
镍基高温合金特别用于涉及高温和应力的应用中,例如航空航天和发电工业中的关键燃气涡轮机叶片和盘。镍高温合金中短裂纹的行为对于部件设计和寿命预测特别重要,因为在最终失效之前,大部分使用寿命都花费在小裂纹的生长上。由于局部微观结构和非均匀应力/应变场的强烈影响,短裂纹在疲劳下会快速生长,并且往往表现出高的、不规则的和分散的生长速率。短裂纹扩展的物理驱动力仍然没有得到很好的理解,但尽管密集的研究工作,主要是由于有限的理解裂纹尖端behavior.This建议的目的是调查的基本变形机制在短裂纹尖端的镍基高温合金疲劳下在一个温度范围内。研究将集中在不断发展的局部塑性的影响,诱导在裂纹尖端的位错动力学,对短裂纹扩展。位错与材料微观结构的相互作用是材料非均匀塑性和内应力集中的主要来源,是短裂纹萌生和扩展的主要原因。将在受控环境中进行短裂纹扩展测试,以研究这些合金在疲劳条件下短裂纹扩展的异常行为,这是UoS的专业知识。为了观察温度变化对裂纹尖端附近滑移行为的临界影响,将改变温度。在裂纹扩展试验之后,将对裂纹尖端区进行事后透射电子显微镜分析,以揭示位错的成核和增殖、位错在相/晶界处的堆积和渗透以及晶粒取向差对位错行为的影响的详细机制。特别是,将从疲劳试验样本的裂纹尖端断裂过程区提取火柴棒样本,以允许在疲劳下原位测量裂纹尖端变形,这是UoM的既定技术。在这种情况下,高分辨率的数字图像相关性,与援助的晶粒取向映射和扫描电子显微镜成像的黄金重塑表面,将被用来量化在疲劳加载过程中裂纹尖端附近形成的滑移痕迹中的剪切应变。此外,亦会进行高能同步辐射X射线衍射研究,以量度裂纹尖端不同相之间的弹性应变反应和载荷转移,从而了解位错渗入γ ′沉淀物的情况。将开发三维离散位错动力学(DDD)方法来模拟位错和材料微结构之间的相互作用,这是LU的强度,根据实验结果。DDD模型将与粘塑性和晶体塑性模型相结合,并进一步应用于研究位错动力学在描述短裂纹扩展中的作用。将建立一个多尺度有限元方法的裂纹尖端变形分析,其目的是确定一个基于细观力学的驱动力的短裂纹扩展。将根据局部应变测量(中尺度和微尺度)、现场和死后测量以及提取的火柴棒样品的X射线断层扫描对计算模拟进行彻底验证。最终的目标是提供一个有效的有限元程序来预测短裂纹的增长,与实验数据的充分验证,为最终用户。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Coupling of phase field and viscoplasticity for modelling cyclic softening and crack growth under fatigue
  • DOI:
    10.1016/j.euromechsol.2021.104472
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Song;L.G. Zhao;H. Qi;S. Li;D. Shi;J. Huang;Y. Su;K. Zhang
  • 通讯作者:
    J. Song;L.G. Zhao;H. Qi;S. Li;D. Shi;J. Huang;Y. Su;K. Zhang
Low cycle fatigue of a directionally solidified nickel-based superalloy: Testing, characterisation and modelling
Computational modelling of full interaction between crystal plasticity and oxygen diffusion at a crack tip
晶体塑性与裂纹尖端氧扩散之间完全相互作用的计算模型
Modelling plastic deformation in a single-crystal nickel-based superalloy using discrete dislocation dynamics
  • DOI:
    10.1186/s40759-016-0012-y
  • 发表时间:
    2016-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. Lin;Minsheng Huang;F. Farukh;A. Roy;V. Silberschmidt;Liguo Zhao
  • 通讯作者:
    B. Lin;Minsheng Huang;F. Farukh;A. Roy;V. Silberschmidt;Liguo Zhao
Oxygen Diffusion and Its Coupling with Crystal Plasticity in a Nickel-Based Superalloy
镍基高温合金中氧扩散及其与晶体塑性的耦合
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Liguo Zhao
  • 通讯作者:
    Liguo Zhao
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Liguo Zhao其他文献

Wear characteristics of GH4169 superalloy at elevated temperatures
  • DOI:
    10.1007/s43452-024-01104-3
  • 发表时间:
    2024-11-26
  • 期刊:
  • 影响因子:
    4.400
  • 作者:
    Bassiouny Saleh;Shenguang Liu;Lu Zhang;Navid Ahsana;Liguo Zhao
  • 通讯作者:
    Liguo Zhao
A multi-factor access scheme for online english teaching system based on cloud computing
基于云计算的在线英语教学系统多因素访问方案
  • DOI:
    10.1016/j.aej.2025.01.131
  • 发表时间:
    2025-05-01
  • 期刊:
  • 影响因子:
    6.800
  • 作者:
    Shasha Wang;Liguo Zhao
  • 通讯作者:
    Liguo Zhao
Efficient greenhouse gas prediction using IoT data streams and a CNN-BiLSTM-KAN model
使用物联网数据流和卷积神经网络-双向长短期记忆网络-核自适应网络模型的高效温室气体预测
  • DOI:
    10.1016/j.aej.2025.01.019
  • 发表时间:
    2025-06-01
  • 期刊:
  • 影响因子:
    6.800
  • 作者:
    Jinyu Zhang;Liguo Zhao
  • 通讯作者:
    Liguo Zhao
Characterization of biodegradable poly( l ‐lactide) tube over accelerated degradation
可生物降解聚(L-丙交酯)管的加速降解特性
  • DOI:
    10.1002/pen.25390
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Raasti Naseem;Liguo Zhao;S. Eswaran;H. Willcock
  • 通讯作者:
    H. Willcock
Artificial intelligence analysis in cyber domain: A review
网络领域的人工智能分析:综述
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Liguo Zhao;D. Zhu;Wasswa Shafik;S. Matinkhah;Zubair Ahmad;Lule Sharif;Alisa Craig
  • 通讯作者:
    Alisa Craig

Liguo Zhao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Liguo Zhao', 18)}}的其他基金

Smart Peripheral Stents for the Lower Extremity - Design, Manufacturing and Evaluation
下肢智能外周支架 - 设计、制造和评估
  • 批准号:
    EP/R001650/1
  • 财政年份:
    2017
  • 资助金额:
    $ 51.18万
  • 项目类别:
    Research Grant
Oxidation Damage at a Crack Tip and Its Significance in Crack Growth under Fatigue-Oxidation Conditions
疲劳氧化条件下裂纹尖端的氧化损伤及其在裂纹扩展中的意义
  • 批准号:
    EP/K026844/1
  • 财政年份:
    2013
  • 资助金额:
    $ 51.18万
  • 项目类别:
    Research Grant
A Micro-Mechanistic Study of Oxygen-Diffusion-Assisted Crack Growth in a Polycrystalline Nickel-Based Superalloy
多晶镍基高温合金氧扩散辅助裂纹扩展的微观机理研究
  • 批准号:
    EP/E062180/1
  • 财政年份:
    2007
  • 资助金额:
    $ 51.18万
  • 项目类别:
    Research Grant

相似国自然基金

新型微针气体探测器LM(Leak Microstructure)的研究
  • 批准号:
    10775151
  • 批准年份:
    2007
  • 资助金额:
    38.0 万元
  • 项目类别:
    面上项目

相似海外基金

Concurrent Multiscale Moving-Window Scheme for Shock Wave Interaction with Material Microstructure
冲击波与材料微观结构相互作用的并行多尺度移动窗口方案
  • 批准号:
    1950488
  • 财政年份:
    2020
  • 资助金额:
    $ 51.18万
  • 项目类别:
    Standard Grant
A multi-level mechanical assessment of osteoarthritic bone and its interaction with joint arthroplasty. Understanding how microstructure influences trabecular-level strain progression within patient excised arthritic/osteoarthritic bone cores with supplem
骨关节炎骨的多层次机械评估及其与关节置换术的相互作用。
  • 批准号:
    418335
  • 财政年份:
    2019
  • 资助金额:
    $ 51.18万
  • 项目类别:
    Operating Grants
Phase-field-based chemomechanical models for phase transitions and dislocation-microstructure interaction in metallic alloys with application to kappa-carbides
基于相场的金属合金相变和位错-微观结构相互作用的化学力学模型及其在卡帕碳化物中的应用
  • 批准号:
    387118820
  • 财政年份:
    2017
  • 资助金额:
    $ 51.18万
  • 项目类别:
    Priority Programmes
Collaborative Research: Mesoscale Investigation of Microstructure-Transport Interaction of High-Capacity Electrodes for Energy Storage
合作研究:用于储能的高容量电极的微结构-输运相互作用的介观研究
  • 批准号:
    1759651
  • 财政年份:
    2017
  • 资助金额:
    $ 51.18万
  • 项目类别:
    Standard Grant
Interaction between the microstructure and the properties of plasma nitrided austenitic stainless steels
等离子氮化奥氏体不锈钢显微组织与性能之间的相互作用
  • 批准号:
    321139694
  • 财政年份:
    2016
  • 资助金额:
    $ 51.18万
  • 项目类别:
    Research Grants
Collaborative Research: Mesoscale Investigation of Microstructure-Transport Interaction of High-Capacity Electrodes for Energy Storage
合作研究:用于储能的高容量电极的微结构-输运相互作用的介观研究
  • 批准号:
    1438431
  • 财政年份:
    2014
  • 资助金额:
    $ 51.18万
  • 项目类别:
    Standard Grant
Dislocation-Microstructure Interaction at a Crack Tip - In Search of a Driving Force for Short Crack Growth
裂纹尖端的位错-微观结构相互作用 - 寻找短裂纹扩展的驱动力
  • 批准号:
    EP/M000737/1
  • 财政年份:
    2014
  • 资助金额:
    $ 51.18万
  • 项目类别:
    Research Grant
Dislocation-Microstructure Interaction at a Crack Tip - In Search of a Driving Force for Short Crack Growth
裂纹尖端的位错-微观结构相互作用 - 寻找短裂纹扩展的驱动力
  • 批准号:
    EP/M000710/1
  • 财政年份:
    2014
  • 资助金额:
    $ 51.18万
  • 项目类别:
    Research Grant
Collaborative Research: Mesoscale Investigation of Microstructure-Transport Interaction of High-Capacity Electrodes for Energy Storage
合作研究:用于储能的高容量电极的微结构-输运相互作用的介观研究
  • 批准号:
    1438683
  • 财政年份:
    2014
  • 资助金额:
    $ 51.18万
  • 项目类别:
    Standard Grant
INTERACTION OF MICROSTRUCTURE AND STRESS IN HIGH TEMPERATURE OXIDATION
高温氧化中微观结构和应力的相互作用
  • 批准号:
    7465980
  • 财政年份:
    1974
  • 资助金额:
    $ 51.18万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了