Interactions between Moduli Spaces, Non-Commutative Algebra, and Deformation Theory.
模空间、非交换代数和变形理论之间的相互作用。
基本信息
- 批准号:EP/M017516/1
- 负责人:
- 金额:$ 28.35万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2015
- 资助国家:英国
- 起止时间:2015 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many great successes within mathematics arise from linking between seemingly disjoint fields of research, allowing techniques and insights developed in one area to shine a new light on problems in another. One example of this is the use of non-commutative algebra to study geometry. Combining both algebraic and geometric insight often allows results to be extended to more natural levels of generalisation, breaking out of restrictions imposed by geometric settings and producing interesting algebraic structures from the geometry. This approach has been particularly successful in the study of resolutions of singularities.An example is provided by minimal resolutions of rational surface singularities having a non-commutative interpretation as reconstruction algebras. Another feature that these minimal resolutions of rational surface singularities possess is that they have a particularly fascinating and beautiful geometric deformation theory, however currently this is not understood from a non-commutative viewpoint. The deformation theory of the reconstruction algebras is expected to be intrinsically linked to the geometric case and so should mirror its interesting features while offering new insights from a non-commutative viewpoint.This research seeks to understand examples such as this by building a bridge between the geometric and non-commutative deformation theory. This will involve developing techniques to construct deformations of non-commutative algebras and producing methods of recovering geometric deformations from non-commutative ones as moduli spaces. It will also encompass general situations, such as moving outside the setting of smooth varieties, which will generate a wide range of new applications in areas such as the construction of 3-folds in the minimal model program.
数学中的许多伟大成就都来自于看似不相交的研究领域之间的联系,允许在一个领域发展的技术和见解为另一个领域的问题带来新的启发。这方面的一个例子是使用非交换代数来研究几何。结合代数和几何的见解往往允许结果被扩展到更自然的概括水平,打破了几何设置所施加的限制,并从几何中产生有趣的代数结构。这种方法在研究奇点的分解方面特别成功,一个例子是有理曲面奇点的最小分解,它具有作为重构代数的非交换解释。这些有理曲面奇点的最小解析度的另一个特点是它们有一个特别迷人和美丽的几何变形理论,但目前还没有从非对易的观点来理解。重建代数的变形理论预计与几何情况有内在联系,因此应该反映其有趣的特征,同时从非交换的角度提供新的见解。本研究旨在通过在几何和非交换变形理论之间建立桥梁来理解此类示例。这将涉及开发技术来构建非交换代数的变形,并产生从非交换代数恢复几何变形作为模空间的方法。它还将包括一般情况下,如移动以外的设置光滑品种,这将产生广泛的新的应用领域,如建设的3倍,在最小模型程序。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quiver GIT for varieties with tilting bundles
Quiver GIT 适用于倾斜捆绑品种
- DOI:10.1007/s00229-016-0914-3
- 发表时间:2017
- 期刊:
- 影响因子:0.6
- 作者:Karmazyn J
- 通讯作者:Karmazyn J
The length classification of threefold flops via noncommutative algebras
- DOI:10.1016/j.aim.2018.11.023
- 发表时间:2017-09
- 期刊:
- 影响因子:1.7
- 作者:J. Karmazyn
- 通讯作者:J. Karmazyn
Deformations of algebras defined by tilting bundles
由倾斜束定义的代数变形
- DOI:10.1016/j.jalgebra.2018.07.031
- 发表时间:2018
- 期刊:
- 影响因子:0.9
- 作者:Karmazyn J
- 通讯作者:Karmazyn J
Multigraded linear series and recollement
- DOI:10.1007/s00209-017-1965-1
- 发表时间:2017-01
- 期刊:
- 影响因子:0.8
- 作者:Alastair Craw;Yukari Ito;J. Karmazyn
- 通讯作者:Alastair Craw;Yukari Ito;J. Karmazyn
Ringel duality for certain strongly quasi-hereditary algebras
某些强准遗传代数的林格尔对偶性
- DOI:10.48550/arxiv.1711.00416
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Kalck Martin
- 通讯作者:Kalck Martin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joseph Karmazyn其他文献
Joseph Karmazyn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joseph Karmazyn', 18)}}的其他基金
Interactions between Moduli Spaces, Non-Commutative Algebra, and Deformation Theory.
模空间、非交换代数和变形理论之间的相互作用。
- 批准号:
EP/M017516/2 - 财政年份:2016
- 资助金额:
$ 28.35万 - 项目类别:
Fellowship
相似海外基金
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
$ 28.35万 - 项目类别:
Studentship
Translations between Type Theories
类型理论之间的翻译
- 批准号:
EP/Z000602/1 - 财政年份:2025
- 资助金额:
$ 28.35万 - 项目类别:
Research Grant
CAREER: Quantifying congruences between modular forms
职业:量化模块化形式之间的同余性
- 批准号:
2337830 - 财政年份:2024
- 资助金额:
$ 28.35万 - 项目类别:
Continuing Grant
CAREER: Closing the Loop between Learning and Communication for Assistive Robot Arms
职业:关闭辅助机器人手臂的学习和交流之间的循环
- 批准号:
2337884 - 财政年份:2024
- 资助金额:
$ 28.35万 - 项目类别:
Standard Grant
Collaborative Research: URoL:ASC: Determining the relationship between genes and ecosystem processes to improve biogeochemical models for nutrient management
合作研究:URoL:ASC:确定基因与生态系统过程之间的关系,以改进营养管理的生物地球化学模型
- 批准号:
2319123 - 财政年份:2024
- 资助金额:
$ 28.35万 - 项目类别:
Standard Grant
Collaborative Research: Geophysical and geochemical investigation of links between the deep and shallow volatile cycles of the Earth
合作研究:地球深层和浅层挥发性循环之间联系的地球物理和地球化学调查
- 批准号:
2333102 - 财政年份:2024
- 资助金额:
$ 28.35万 - 项目类别:
Continuing Grant
Exploration of relationship between floods, poverty, and dynamic environmental sustainability
探索洪水、贫困和动态环境可持续性之间的关系
- 批准号:
24K07692 - 财政年份:2024
- 资助金额:
$ 28.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigation of crosstalk between Fanconi Anemia pathway and ATM for novel therapeutic strategies of chemoresistant ALT-positive high-risk neuroblastoma
范可尼贫血通路与 ATM 之间的串扰研究,用于化疗耐药 ALT 阳性高危神经母细胞瘤的新治疗策略
- 批准号:
24K10442 - 财政年份:2024
- 资助金额:
$ 28.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Thwarted Identity: The Missing Link Between Psychopathology and Prejudice
受挫的身份:精神病理学与偏见之间缺失的联系
- 批准号:
DP240100108 - 财政年份:2024
- 资助金额:
$ 28.35万 - 项目类别:
Discovery Projects
Interplay between Aging and Tubulin Posttranslational Modifications
衰老与微管蛋白翻译后修饰之间的相互作用
- 批准号:
24K18114 - 财政年份:2024
- 资助金额:
$ 28.35万 - 项目类别:
Grant-in-Aid for Early-Career Scientists