Interactions between Moduli Spaces, Non-Commutative Algebra, and Deformation Theory.

模空间、非交换代数和变形理论之间的相互作用。

基本信息

  • 批准号:
    EP/M017516/1
  • 负责人:
  • 金额:
    $ 28.35万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2015
  • 资助国家:
    英国
  • 起止时间:
    2015 至 无数据
  • 项目状态:
    已结题

项目摘要

Many great successes within mathematics arise from linking between seemingly disjoint fields of research, allowing techniques and insights developed in one area to shine a new light on problems in another. One example of this is the use of non-commutative algebra to study geometry. Combining both algebraic and geometric insight often allows results to be extended to more natural levels of generalisation, breaking out of restrictions imposed by geometric settings and producing interesting algebraic structures from the geometry. This approach has been particularly successful in the study of resolutions of singularities.An example is provided by minimal resolutions of rational surface singularities having a non-commutative interpretation as reconstruction algebras. Another feature that these minimal resolutions of rational surface singularities possess is that they have a particularly fascinating and beautiful geometric deformation theory, however currently this is not understood from a non-commutative viewpoint. The deformation theory of the reconstruction algebras is expected to be intrinsically linked to the geometric case and so should mirror its interesting features while offering new insights from a non-commutative viewpoint.This research seeks to understand examples such as this by building a bridge between the geometric and non-commutative deformation theory. This will involve developing techniques to construct deformations of non-commutative algebras and producing methods of recovering geometric deformations from non-commutative ones as moduli spaces. It will also encompass general situations, such as moving outside the setting of smooth varieties, which will generate a wide range of new applications in areas such as the construction of 3-folds in the minimal model program.
数学中的许多伟大成就都源于看似互不相交的研究领域之间的联系,使一个领域中发展出来的技术和见解能够为另一个领域的问题带来新的曙光。其中一个例子是使用非对易代数来研究几何。将代数洞察力和几何洞察力结合起来,往往可以将结果扩展到更自然的泛化水平,打破几何设置的限制,从几何中产生有趣的代数结构。这种方法在奇点分解的研究中特别成功,例如具有非对易解释的有理曲面奇点的极小分解作为重构代数。这些有理曲面奇点的最小分辨率所具有的另一个特征是它们具有特别吸引人和美丽的几何形变理论,然而目前这一理论并不是从非对易的观点来理解的。重构代数的变形理论应该与几何情形有内在的联系,因此应该反映其有趣的特征,同时从非对易的角度提供新的见解。本研究试图通过在几何和非对易变形理论之间架起一座桥梁来理解这样的例子。这将涉及开发构造非交换代数的变形的技术,以及产生将非交换代数的几何变形恢复为模空间的方法。它还将涵盖一般情况,如移动到光滑品种的设置之外,这将在最小模型程序中构建3折叠等领域产生广泛的新应用。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quiver GIT for varieties with tilting bundles
Quiver GIT 适用于倾斜捆绑品种
  • DOI:
    10.1007/s00229-016-0914-3
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    Karmazyn J
  • 通讯作者:
    Karmazyn J
The length classification of threefold flops via noncommutative algebras
  • DOI:
    10.1016/j.aim.2018.11.023
  • 发表时间:
    2017-09
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    J. Karmazyn
  • 通讯作者:
    J. Karmazyn
Deformations of algebras defined by tilting bundles
由倾斜束定义的代数变形
  • DOI:
    10.1016/j.jalgebra.2018.07.031
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Karmazyn J
  • 通讯作者:
    Karmazyn J
Multigraded linear series and recollement
  • DOI:
    10.1007/s00209-017-1965-1
  • 发表时间:
    2017-01
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Alastair Craw;Yukari Ito;J. Karmazyn
  • 通讯作者:
    Alastair Craw;Yukari Ito;J. Karmazyn
Ringel duality for certain strongly quasi-hereditary algebras
某些强准遗传代数的林格尔对偶性
  • DOI:
    10.48550/arxiv.1711.00416
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kalck Martin
  • 通讯作者:
    Kalck Martin
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joseph Karmazyn其他文献

Joseph Karmazyn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joseph Karmazyn', 18)}}的其他基金

Interactions between Moduli Spaces, Non-Commutative Algebra, and Deformation Theory.
模空间、非交换代数和变形理论之间的相互作用。
  • 批准号:
    EP/M017516/2
  • 财政年份:
    2016
  • 资助金额:
    $ 28.35万
  • 项目类别:
    Fellowship

相似海外基金

Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    $ 28.35万
  • 项目类别:
    Studentship
Translations between Type Theories
类型理论之间的翻译
  • 批准号:
    EP/Z000602/1
  • 财政年份:
    2025
  • 资助金额:
    $ 28.35万
  • 项目类别:
    Research Grant
Thwarted Identity: The Missing Link Between Psychopathology and Prejudice
受挫的身份:精神病理学与偏见之间缺失的联系
  • 批准号:
    DP240100108
  • 财政年份:
    2024
  • 资助金额:
    $ 28.35万
  • 项目类别:
    Discovery Projects
A Cultural Plutocracy? Transnational families and the consumption of luxury goods in Britain and in France between 1870 and 1930
文化富豪统治?
  • 批准号:
    2882198
  • 财政年份:
    2024
  • 资助金额:
    $ 28.35万
  • 项目类别:
    Studentship
A MISSING LINK between continental shelves and the deep sea: Addressing the overlooked role of land-detached submarine canyons
大陆架和深海之间缺失的联系:解决与陆地无关的海底峡谷被忽视的作用
  • 批准号:
    NE/X014975/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.35万
  • 项目类别:
    Research Grant
Leveraging the synergy between experiment and computation to understand the origins of chalcogen bonding
利用实验和计算之间的协同作用来了解硫族键合的起源
  • 批准号:
    EP/Y00244X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.35万
  • 项目类别:
    Research Grant
Collaborative Research: URoL:ASC: Determining the relationship between genes and ecosystem processes to improve biogeochemical models for nutrient management
合作研究:URoL:ASC:确定基因与生态系统过程之间的关系,以改进营养管理的生物地球化学模型
  • 批准号:
    2319123
  • 财政年份:
    2024
  • 资助金额:
    $ 28.35万
  • 项目类别:
    Standard Grant
CAREER: Quantifying congruences between modular forms
职业:量化模块化形式之间的同余性
  • 批准号:
    2337830
  • 财政年份:
    2024
  • 资助金额:
    $ 28.35万
  • 项目类别:
    Continuing Grant
CAREER: Closing the Loop between Learning and Communication for Assistive Robot Arms
职业:关闭辅助机器人手臂的学习和交流之间的循环
  • 批准号:
    2337884
  • 财政年份:
    2024
  • 资助金额:
    $ 28.35万
  • 项目类别:
    Standard Grant
Collaborative Research: Geophysical and geochemical investigation of links between the deep and shallow volatile cycles of the Earth
合作研究:地球深层和浅层挥发性循环之间联系的地球物理和地球化学调查
  • 批准号:
    2333102
  • 财政年份:
    2024
  • 资助金额:
    $ 28.35万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了