Brauer-Manin obstruction, K3 surfaces and families of twists of abelian varieties

布劳尔-马宁阻塞、K3 表面和阿贝尔变种的扭曲家族

基本信息

  • 批准号:
    EP/M020266/1
  • 负责人:
  • 金额:
    $ 37.04万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2015
  • 资助国家:
    英国
  • 起止时间:
    2015 至 无数据
  • 项目状态:
    已结题

项目摘要

Diophantine equations are one of the oldest parts of pure mathematics and the starting point in the development of number theory. Legendre and Gauss initiated a local-to-global approach to Diophantine equations culminating in class field theory and the Minkowski-Hasse theorem for quadratic forms over number fields. In essence this is the question about the passage from polynomial congruences modulo natural numbers to solutions of polynomial equations in integres. In 1970 Manin found a way to apply class field theory to the problem of existence of rational points on arbitrary algebraic varieties over global fields. The resulting theory of Brauer-Manin obstruction has had very many applications. It was later merged with the method of descent going back to Fermat, Mordell, Selmer, Cassels, and with the method of fibration going back to Hasse. These methods can be used to show that the Brauer-Manin obstruction controls the existence and distribution of rational points on certain geometrically rational varieties. As is traditional in number theory, the success of an algebraic technique depends on results from analytic number theory. Very strong analytic results have recently been obtained by Green, Tao and Ziegler by methods of additive combinatorics. As an application, important particular cases of long standing conjectures about rational families of conics and quadrics have been settled. On the other hand, for families of conics and quadrics parameterised by a curve of genus at least one, counterexamples have been found. K3 surfaces is athe next crucial class of algebraic varieties that in some sense occupies the middle ground between rational varieties, where one expects the behaviour of rational points to be controlled by the Brauer-Manin obstruction, and more general varieties where no efficient local-to-global approach is known. From another perspective, K3 surfaces are geometrically simply connected 2-dimensional analogues of elliptic curves, so one expects a deep and rich arithmetic theory of K3 surfaces and rational points on them. The only method to prove the existence of rational points on K3 surfaces known today is due to Swinnerton-Dyer. It applies to families of quadratic or cubic twists of abelian varieties, e.g. elliptic curves. The theory of elliptic curves has recently seen massive breakthroughs (due to Bharagava and others), and we hope to be able to use these results to advance our understanding of rational points on K3 surfaces and more general varieties.
丢番图方程是纯数学中最古老的部分之一,也是数论发展的起点。勒让德和高斯开创了一种从局部到全局的方法来求解丢番图方程,最终形成了类域理论和数域上二次型的Minkowski-Hasse定理。本质上,这是关于从模为自然数的多项式同余到积分中多项式方程的解的问题。1970年,Manin发现了一种方法,将类场理论应用于整体域上任意代数簇上的有理点的存在性问题。由此产生的布劳尔-马宁阻塞理论已有很多应用。后来,它与费马、莫代尔、塞尔默、卡塞尔的降落法相结合,并与哈塞的纤维化法相结合。这些方法可以用来证明Brauer-Manin障碍控制着某些几何有理簇上有理点的存在和分布。与数论中的传统一样,代数技术的成功取决于解析数论的结果。最近,Green、Tao和Ziegler用加性组合学的方法得到了很强的解析结果。作为应用,解决了长期存在的关于二次曲线和二次曲线族的猜想的重要特例。另一方面,对于至少由一条亏格曲线参数表示的二次曲线族,已经找到了反例。K3曲面是下一类至关重要的代数簇,它在某种意义上占据了有理簇和更一般簇之间的中间地带,在有理簇中,人们期望有理点的行为由Brauer-Manin障碍控制,而在更一般的簇中,没有有效的局部到全局的方法。从另一个角度来看,K3曲面是几何上单连通的二维椭圆曲线,因此人们期待着K3曲面及其上的有理点有一个深刻而丰富的算术理论。目前已知的证明K3曲面上有理点存在的唯一方法是Swinnerton-Dyer。它适用于阿贝尔变种的二次或三次扭曲的族,例如椭圆曲线。椭圆曲线理论最近取得了巨大的突破(由于Bharagava等人),我们希望能够利用这些结果来推进我们对K3曲面上有理点和更一般簇的理解。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Pseudo-split fibers and arithmetic surjectivity
赝分裂纤维和算术满射性
Degree and the Brauer-Manin obstruction
程度和 Brauer-Manin 阻塞
  • DOI:
    10.2140/ant.2018.12.2445
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    Creutz B
  • 通讯作者:
    Creutz B
Corrigendum to "Odd order Brauer-Manin obstruction on diagonal quartic surfaces" [Adv. Math. 270 (2015) 181-205]
对“对角四次曲面上的奇阶布劳尔-马宁障碍”的勘误 [Adv.
  • DOI:
    10.1016/j.aim.2016.05.014
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Ieronymou E
  • 通讯作者:
    Ieronymou E
On uniformity conjectures for abelian varieties and K3 surfaces
关于阿贝尔簇和 K3 表面的均匀性猜想
Unlikely intersections with Hecke translates of a special subvariety
与赫克翻译不太可能有交叉的特殊亚品种
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexei Skorobogatov其他文献

Brauer group in arithmetic geometry with special reference to K3 surfaces and abelian varieties
算术几何中的布劳尔群,特别参考 K3 曲面和阿贝尔簇
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alexei Skorobogatov
  • 通讯作者:
    Alexei Skorobogatov
Lie algebras
李代数
  • DOI:
    10.1142/9789813236868_0003
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alexei Skorobogatov
  • 通讯作者:
    Alexei Skorobogatov

Alexei Skorobogatov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexei Skorobogatov', 18)}}的其他基金

Local-to-global principles for random Diophantine equations
随机丢番图方程的局部到全局原理
  • 批准号:
    EP/V048236/1
  • 财政年份:
    2021
  • 资助金额:
    $ 37.04万
  • 项目类别:
    Research Grant

相似海外基金

Zariski稠密な例外集合を持つ曲面に対するManin予想の証明に向けて
证明具有 Zariski 稠密异常集的曲面的马宁猜想
  • 批准号:
    24KJ1234
  • 财政年份:
    2024
  • 资助金额:
    $ 37.04万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
有理点/有理曲線/モチーフのManin予想の多角的研究
有理点/有理曲线/基序马宁猜想的多方面研究
  • 批准号:
    23K25764
  • 财政年份:
    2024
  • 资助金额:
    $ 37.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Characterization of multivariate sigma-functions in terms of a system of partial differential equations obtained by Gauss-Manin connection
用通过高斯-马宁连接获得的偏微分方程组表征多元 sigma 函数
  • 批准号:
    23K03157
  • 财政年份:
    2023
  • 资助金额:
    $ 37.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
ALGEBRAIC STRUCTURE OF MANIN SCHECHTMAN HIGHER BRAID GROUPS AND STRATIFICATIONS OF DISCRIMINANTAL ARRANGEMENTS
马宁谢赫曼高级辫群的代数结构和判别排列的分层
  • 批准号:
    21K03193
  • 财政年份:
    2021
  • 资助金额:
    $ 37.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Free divisors, Gauss-Manin systems and Monodromy Calculus
自由除数、高斯-马宁系统和单峰微积分
  • 批准号:
    EP/E021727/1
  • 财政年份:
    2006
  • 资助金额:
    $ 37.04万
  • 项目类别:
    Research Grant
Gauss-Manin 微分方程式系の代数的構造とその解の解析的性質
高斯-马宁微分方程组的代数结构及其解的解析性质
  • 批准号:
    59740086
  • 财政年份:
    1984
  • 资助金额:
    $ 37.04万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
The Gauss-Manin Connection and Elliptic Surfaces
高斯-马宁连接和椭圆曲面
  • 批准号:
    7802329
  • 财政年份:
    1978
  • 资助金额:
    $ 37.04万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了