Large Volume, Multi-material High Speed Sintering Machine

大体积、多材料高速烧结机

基本信息

  • 批准号:
    EP/M020827/1
  • 负责人:
  • 金额:
    $ 113.69万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2015
  • 资助国家:
    英国
  • 起止时间:
    2015 至 无数据
  • 项目状态:
    已结题

项目摘要

Additive Manufacturing (aka industrial 3D Printing) technologies have been widely recognised as extremely important for the reshaping, re-shoring and sustainable growth of UK manufacturing. The lack of process speed has been cited as the greatest inhibitor to growth of Additive Manufacturing, identifying a need for speed improvement by 4-10X over today's technologies.High Speed Sintering (http://www.lboro.ac.uk/enterprise/hss/) is an Additive Manufacturing process invented under EPSRC funded research with granted patents globally. High Speed Sintering (HSS) has the potential to be the world's first Additive Manufacturing process that is capable of producing robust polymer parts at a production rate quicker than 1 second per part and at a cost that is comparable with today's high volume manufacturing processes such as injection moulding. Additionally, HSS has the potential to create multi-material parts in a scalable manner. In this project we propose to create the world's first HSS machine capable of high part throughput and multi-materials and thus open up the possibility for a vast range of hitherto impossible research of international significance to be undertaken.HSS works by first taking a 3D computer aided design model of a part to be made and slicing this into thin layers, each layer being represented by a 2D bitmap image file. A computer file containing all the bitmap images that comprise each layer of the part to be made is sent to an HSS machine. The machine starts by depositing a thin layer of fine polymer powder onto a flat platform and then printing the bitmap image of the bottom layer of the part to be made onto the powder using a special ink designed to absorb infra-red energy. Next, a lamp emits infra-red energy across the surface of the powder/ink and the ink absorbs the energy becoming hot enough to melt and fuse together the polymer powder directly beneath it - areas that have not been printed do not heat enough to melt the powder. The machine then deposits a further layer of powder over the first layer and prints the 2D shape of the next layer of the part being made and again applies infra-red energy over the bed surface. This melts particles under the ink in the second layer to each other but also melts these particles to those that were melted in the previous layer, starting to build up a 3D part. The process is repeated many times to create a part that is embedded in a "cake" of un-melted powder. The un-melted powder is then removed to reveal the part.HSS has been proven to work on a small scale using single materials. The aim of this project is to create a large machine with a bed area of 1m x 1m that is capable of creating many parts simultaneously. Our models predict that a 1m x 1m x 1m bed will enable a production rate of small components <1 second per part, representing a speed improvement over 10X compared to today's comparable state of the art machines. The machine we will make will also allow us to print further materials additional to the ink that absorbs infra-red energy - for example we will be able to print conductive inks so that we can create parts with embedded electronic circuitry and devices such as capacitors.There will be significant technical challenges to create the machine especially in terms of powder deposition and thermal control; our additional ambition to create multi-material parts will present substantial challenges in terms of inkjet printing and thermal control of dissimilar materials. We will address these challenges by first conducting a range of experiments into aspects such as method of powder deposition and approaches to printing dissimilar inks to inform our design decisions. We will create the machine by employing a team of engineers with a strong track record for producing manufacturing research equipment led by the lead inventor of the HSS process.
加法制造(又名工业3D打印)技术被广泛认为对英国制造业的重塑、再支撑和可持续增长极其重要。工艺速度的缺乏被认为是添加剂制造增长的最大阻碍,确定了速度需要比今天的技术提高4-10倍。高速烧结(http://www.lboro.ac.uk/enterprise/hss/)是根据EPSRC资助的全球获得专利的研究发明的添加剂制造工艺。高速烧结(HSS)有可能成为世界上第一个添加剂制造工艺,能够以每部件快于1秒的生产速度生产坚固的聚合物部件,并且成本可与当今的大批量制造工艺(如注塑)相媲美。此外,HSS具有以可扩展的方式创建多材料零件的潜力。在这个项目中,我们计划创建世界上第一台能够高产量和多材料的高速钢结构机床,从而为开展迄今不可能进行的具有国际意义的广泛研究打开可能性。高速钢结构的工作原理是首先对要制造的零件进行3D计算机辅助设计模型,并将其切片成薄层,每一层由2D位图图像文件表示。包含构成要制造的零件的每一层的所有位图图像的计算机文件被发送到HSS机器。该机器首先将一层薄薄的精细聚合物粉末沉积在平板平台上,然后使用一种专为吸收红外线能量而设计的特殊墨水将待制造零件底层的位图图像打印到粉末上。接下来,灯在粉末/油墨的表面发射红外线能量,油墨吸收足够热的能量,将其正下方的聚合物粉末融化在一起--尚未打印的区域没有足够的热量来融化粉末。然后,机器在第一层上再沉积一层粉末,打印出正在制造的零件的下一层的2D形状,并再次在床面上施加红外线能量。这会将第二层中墨水下的粒子相互熔化,但也会将这些粒子熔化到前一层中熔化的粒子,从而开始构建3D部件。这个过程被重复多次,以创造出一个嵌入到未熔化粉末的“蛋糕”中的部件。未熔化的粉末随后被移除以显露出该部分。HSS已被证明在使用单一材料的小规模工作。这个项目的目标是创造一台床面面积为1m x 1m的大型机器,能够同时创建多个部件。我们的模型预测,一张1m x 1m x 1m的床将能够实现每部件1秒的小部件生产率,与当今可比的最先进机器相比,速度将提高10倍以上。我们将制造的机器还将允许我们在吸收红外线能量的墨水之外打印更多材料-例如,我们将能够打印导电油墨,以便我们可以制造具有嵌入式电子电路和设备(如电容器)的部件。制造机器将面临巨大的技术挑战,特别是在粉末沉积和热控制方面;我们制造多材料部件的额外雄心将在喷墨打印和不同材料的热控制方面带来巨大挑战。我们将通过首先对粉末沉积方法和打印不同油墨的方法等方面进行一系列实验来解决这些挑战,以指导我们的设计决策。我们将通过雇佣一支在生产制造研究设备方面拥有良好记录的工程师团队来制造这台机器,该团队由HSS工艺的主要发明者领导。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Candice Majewski其他文献

More than just a GeometryLaser Sintered Parts with Anti-Bacterial Properties
不仅仅是具有抗菌特性的几何激光烧结零件
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Candice Majewski
  • 通讯作者:
    Candice Majewski

Candice Majewski的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Candice Majewski', 18)}}的其他基金

When the drugs don't work... Manufacturing our pathogen defenses
当药物不起作用时……制造我们的病原体防御系统
  • 批准号:
    EP/R036748/1
  • 财政年份:
    2018
  • 资助金额:
    $ 113.69万
  • 项目类别:
    Research Grant

相似海外基金

A Dual Camera Lattice Lightsheet Microscope To Deliver Transformative Multi-Channel Volume Imaging
双摄像头晶格光片显微镜可提供变革性的多通道体积成像
  • 批准号:
    BB/X019578/1
  • 财政年份:
    2023
  • 资助金额:
    $ 113.69万
  • 项目类别:
    Research Grant
A multi-plane 3-photon microscope for volume imaging in NHP cortex
用于 NHP 皮层体积成像的多平面 3 光子显微镜
  • 批准号:
    10205806
  • 财政年份:
    2021
  • 资助金额:
    $ 113.69万
  • 项目类别:
CT--Compatible Hexapod Robot for Multi--Directional Mechanical Testing of Bone by Digital Volume Correlation
CT--兼容六足机器人,通过数字体积相关对骨骼进行多方向力学测试
  • 批准号:
    RTI-2022-00634
  • 财政年份:
    2021
  • 资助金额:
    $ 113.69万
  • 项目类别:
    Research Tools and Instruments
Development of multi-charged ion microbeam system for high-mix low-volume production of power semiconductors
开发用于功率半导体高混合小批量生产的多电荷离子微束系统
  • 批准号:
    20K04219
  • 财政年份:
    2020
  • 资助金额:
    $ 113.69万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Realistic microstructural morphology-based Representative Volume Elements for modeling the mechanical response of multi-phase steels
基于真实微观结构形态的代表性体积元素,用于模拟多相钢的机械响应
  • 批准号:
    538217-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 113.69万
  • 项目类别:
    Engage Grants Program
Large-volume, multi-use micro-computed tomography
大容量、多用途微型计算机断层扫描
  • 批准号:
    LE180100136
  • 财政年份:
    2018
  • 资助金额:
    $ 113.69万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
Parallel High-Order Adaptive Mesh Refinement Finite-Volume Schemes for Multi-Scale Physically-Complex Flows
多尺度物理复杂流的并行高阶自适应网格细化有限体积方案
  • 批准号:
    RGPIN-2014-04583
  • 财政年份:
    2018
  • 资助金额:
    $ 113.69万
  • 项目类别:
    Discovery Grants Program - Individual
Parallel High-Order Adaptive Mesh Refinement Finite-Volume Schemes for Multi-Scale Physically-Complex Flows
多尺度物理复杂流的并行高阶自适应网格细化有限体积方案
  • 批准号:
    RGPIN-2014-04583
  • 财政年份:
    2017
  • 资助金额:
    $ 113.69万
  • 项目类别:
    Discovery Grants Program - Individual
Parallel High-Order Adaptive Mesh Refinement Finite-Volume Schemes for Multi-Scale Physically-Complex Flows
多尺度物理复杂流的并行高阶自适应网格细化有限体积方案
  • 批准号:
    462053-2014
  • 财政年份:
    2016
  • 资助金额:
    $ 113.69万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Parallel High-Order Adaptive Mesh Refinement Finite-Volume Schemes for Multi-Scale Physically-Complex Flows
多尺度物理复杂流的并行高阶自适应网格细化有限体积方案
  • 批准号:
    RGPIN-2014-04583
  • 财政年份:
    2016
  • 资助金额:
    $ 113.69万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了