Development of a Multimodal Lifelogging Platform to Support Self-Reflection & Monitor Inflammation Associated With the Experience of Negative Emotions

开发多模式生活记录平台以支持自我反思

基本信息

  • 批准号:
    EP/M029484/1
  • 负责人:
  • 金额:
    $ 12.61万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2015
  • 资助国家:
    英国
  • 起止时间:
    2015 至 无数据
  • 项目状态:
    已结题

项目摘要

The project will develop a mobile lifelogging platform that will deliver measures of cardiovascular disease in an everyday situation, such as driving a car. Driving represents a common daily activity, where experiences and expressions of anger have implications for health and safety. As such, this activity can be associated with high levels of negative emotions that have a cumulative impact on long-term health.Lifelogging is the continuous act of recording and documenting our lives, from the things we do, to the places we visit and even our feelings. Wearable cameras and body sensors allow us to capture rich information from multiple data sources about ourselves. As sensors become more prevalent, within our environment, the range of available data is increasing. This has enabled lifelogs to become richer with information and their use in various application domains, such as digital health, is increasing. The project will explore how multiple streams of physiological and contextual data can be processed and integrated in real-time to detect the user's state. Measures such as heart rate, pulse wave velocity (PWV), speed of the vehicle, location, and first-person photographs of the environment will be brought together to identify instances of anger and inflammation. A range of signal processing approaches will be applied to these data items (e.g. inter-beat interval from the heart rate will be subjected to Fast Fourier Transform) and artefacts will be identified and either removed or incorporated in real-time. Currently, it is straightforward to log overt aspects of behaviour, such as photographs, location and movement. However, this project will combine those markers with covert changes in cardiovascular physiology, which aren't perceived directly by the user. Hence, the project is extending a person's awareness of their bodies, how their behaviour and reactions to situations are directly impacting their bodies and the triggers for such behaviour, e.g. traffic congestion at a junction may raise our heart rate, without the user being consciously aware of this physiological change. Repeating this stressful behaviour daily, over a sustained period, could contribute to the development of cardiovascular disease. Reviewing moments when arterial inflammation occurs and understanding the context of this behaviour leads to an enhanced perception of how daily events affect health. This can lead to positive changes to the person's lifestyle, such as avoiding the junction in question to help prevent triggers leading to the onset of cardiovascular disease.The system will provide a new method to monitor and influence behaviour, which enables us to enhance and bring the field of lifelogging into alignment with advances in digital health. This is achieved using markers that are clinically relevant in the context of lifelogging technologies and developing techniques to process multi-modal signals in real-time. To the best of the author's knowledge, the integration of such biomedical markers that measures physiological changes in context to prevent the onset of disease has not been addressed in any other developments. Overall, the project attempts to reduce a significant real-world problem with an advanced mobile lifelogging platform. The platform will be evaluated in a real-world scenario to assess its capabilities outside of an artificial environment. This will enable us to gauge its robustness as a real and practical solution to log and quantify behaviour. In this way, the data collected will be used to identify moments of arterial inflammation and the context of those times to promote self-reflection and the implementation of behavioural changes.
该项目将开发一个移动的生活记录平台,在日常情况下(如驾驶汽车)提供心血管疾病的测量。驾驶是一种常见的日常活动,其中愤怒的经历和表达对健康和安全有影响。因此,这种活动可能与高水平的负面情绪有关,对长期健康产生累积影响。生活日志是记录和记录我们生活的持续行为,从我们做的事情,到我们访问的地方,甚至我们的感受。可穿戴摄像头和身体传感器使我们能够从多个数据源中捕获关于自己的丰富信息。随着传感器变得越来越普遍,在我们的环境中,可用数据的范围正在增加。这使得生活日志能够变得更加丰富,并且它们在各种应用领域(例如数字健康)中的使用正在增加。该项目将探索如何实时处理和整合多个生理和上下文数据流,以检测用户的状态。心率、脉搏波速度(PWV)、车辆速度、位置和环境的第一人称照片等指标将被结合在一起,以识别愤怒和炎症的情况。将对这些数据项应用一系列信号处理方法(例如,将对来自心率的心跳间间隔进行快速傅立叶变换),并且将识别伪影并实时去除或合并伪影。目前,记录行为的公开方面,如照片,位置和运动是直截了当的。然而,该项目将联合收割机结合这些标记与心血管生理学的隐蔽变化,这是用户无法直接感知的。因此,该项目正在扩展一个人对自己身体的认识,他们的行为和对情况的反应如何直接影响他们的身体以及这种行为的触发因素,例如,交叉路口的交通拥堵可能会提高我们的心率,而用户没有意识到这种生理变化。每天重复这种压力行为,持续一段时间,可能会导致心血管疾病的发展。回顾动脉炎症发生的时刻,并了解这种行为的背景,可以增强对日常事件如何影响健康的认识。这可以给人的生活方式带来积极的改变,例如避免出现相关路口,以帮助预防导致心血管疾病发作的触发因素。该系统将提供一种监测和影响行为的新方法,使我们能够增强并使生活记录领域与数字健康的进步保持一致。这是通过使用在生命记录技术和开发实时处理多模态信号的技术的背景下与临床相关的标记来实现的。据作者所知,这种生物医学标记物的整合,测量环境中的生理变化,以防止疾病的发作还没有解决在任何其他的发展。总的来说,该项目试图通过先进的移动的生活记录平台来减少一个重大的现实问题。该平台将在真实世界的场景中进行评估,以评估其在人工环境之外的能力。这将使我们能够衡量其作为记录和量化行为的真实的实用解决方案的鲁棒性。通过这种方式,收集的数据将用于识别动脉炎症的时刻以及这些时间的背景,以促进自我反思和实施行为改变。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Signal Processing of Multimodal Mobile Lifelogging Data Towards Detecting Stress in Real-World Driving
  • DOI:
    10.1109/tmc.2018.2840153
  • 发表时间:
    2019-03-01
  • 期刊:
  • 影响因子:
    7.9
  • 作者:
    Dobbins, Chelsea;Fairclough, Stephen
  • 通讯作者:
    Fairclough, Stephen
Personal informatics and negative emotions during commuter driving: Effects of data visualization on cardiovascular reactivity & mood
A mobile lifelogging platform to measure anxiety and anger during real-life driving
Applied Computing in Medicine and Health
医学与健康中的应用计算
  • DOI:
    10.1016/b978-0-12-803468-2.00002-3
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dobbins C
  • 通讯作者:
    Dobbins C
Wearable Sensors, Driving and the Visualization of Cardiovascular Stress During Everyday Life
可穿戴传感器、驾驶和日常生活中心血管压力的可视化
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dobbins C
  • 通讯作者:
    Dobbins C
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chelsea Dobbins其他文献

A Machine Learning Algorithm for Searching Vectorised RDF Data
一种用于搜索矢量化 RDF 数据的机器学习算法
Journal of Sensor and Actuator Networks Lesson Learned from Collecting Quantified Self Information via Mobile and Wearable Devices
传感器和执行器网络杂志通过移动和可穿戴设备收集量化自我信息的经验教训
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Reza Rawassizadeh;Elaheh Momeni;Chelsea Dobbins;Pejman Mirza;Ramin Rahnamoun
  • 通讯作者:
    Ramin Rahnamoun
Effects of interacting with facial expressions and controllers in different virtual environments on presence, usability, affect, and neurophysiological signals
在不同虚拟环境中与面部表情和控制器交互对存在感、可用性、情感和神经生理信号的影响
  • DOI:
    10.1016/j.ijhcs.2021.102762
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Arindam Dey;Amit Barde;Bowen Yuan;E. Sareen;Chelsea Dobbins;Aaron Goh;Gaurav Gupta;Anubha Gupta;M. Billinghurst
  • 通讯作者:
    M. Billinghurst
Creating human digital memories with the aid of pervasive mobile devices
借助普及的移动设备创建人类数字记忆
  • DOI:
    10.1016/j.pmcj.2013.10.009
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chelsea Dobbins;M. Merabti;P. Fergus;D. Llewellyn
  • 通讯作者:
    D. Llewellyn
Remotely monitoring and preventing the development of pressure ulcers with the aid of human digital memories
借助人类数字记忆远程监测和预防压疮的发展

Chelsea Dobbins的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Where Gesture Meets Grammar: Crosslinguistic Multimodal Communication
手势与语法的结合:跨语言多模式交流
  • 批准号:
    DP240102369
  • 财政年份:
    2024
  • 资助金额:
    $ 12.61万
  • 项目类别:
    Discovery Projects
Exploring the Mechanisms of Multimodal Metaphor Creation in Japanese Children
探索日本儿童多模态隐喻创造的机制
  • 批准号:
    24K16041
  • 财政年份:
    2024
  • 资助金额:
    $ 12.61万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
HoloSurge: Multimodal 3D Holographic tool and real-time Guidance System with point-of-care diagnostics for surgical planning and interventions on liver and pancreatic cancers
HoloSurge:多模态 3D 全息工具和实时指导系统,具有护理点诊断功能,可用于肝癌和胰腺癌的手术规划和干预
  • 批准号:
    10103131
  • 财政年份:
    2024
  • 资助金额:
    $ 12.61万
  • 项目类别:
    EU-Funded
ZooCELL: Tracing the evolution of sensory cell types in animal diversity: multidisciplinary training in 3D cellular reconstruction, multimodal data ..
ZooCELL:追踪动物多样性中感觉细胞类型的进化:3D 细胞重建、多模态数据方面的多学科培训..
  • 批准号:
    EP/Y037049/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12.61万
  • 项目类别:
    Research Grant
Tracing the evolution of sensory cell types in animal diversity: multidisciplinary training in 3D cellular reconstruction, multimodal data analysis
追踪动物多样性中感觉细胞类型的进化:3D 细胞重建、多模式数据分析的多学科培训
  • 批准号:
    EP/Y037081/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12.61万
  • 项目类别:
    Research Grant
mLMT: Multimodal Large Machine Translation Model
mLMT:多模态大型机器翻译模型
  • 批准号:
    24K20841
  • 财政年份:
    2024
  • 资助金额:
    $ 12.61万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Next Generation Tools For Genome-Centric Multimodal Data Integration In Personalised Cardiovascular Medicine
个性化心血管医学中以基因组为中心的多模式数据集成的下一代工具
  • 批准号:
    10104323
  • 财政年份:
    2024
  • 资助金额:
    $ 12.61万
  • 项目类别:
    EU-Funded
Integrated multimodal microscopy facility for single molecule analysis
用于单分子分析的集成多模态显微镜设施
  • 批准号:
    LE240100086
  • 财政年份:
    2024
  • 资助金额:
    $ 12.61万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
Towards Evolvable and Sustainable Multimodal Machine Learning
迈向可进化和可持续的多模式机器学习
  • 批准号:
    DE240100105
  • 财政年份:
    2024
  • 资助金额:
    $ 12.61万
  • 项目类别:
    Discovery Early Career Researcher Award
Class-Balanced Contrastive Learning for Multimodal Recognition
多模态识别的类平衡对比学习
  • 批准号:
    24K20831
  • 财政年份:
    2024
  • 资助金额:
    $ 12.61万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了