Development of a cryofree ultra low temperature environment for quantum enhanced sensors
量子增强传感器的无冷冻超低温环境的开发
基本信息
- 批准号:EP/M508354/1
- 负责人:
- 金额:$ 13.14万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2015
- 资助国家:英国
- 起止时间:2015 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposed feasibility study brings together industrial partners from Oxford Instruments and academic partners fromLancaster University to tackle the problem of bringing to market a user-friendly, compact, portable machine for current andfuture commercial applications in quantum technologies that need low-noise, low-temperature, isolated environments inorder to function.The effects of quantum mechanics are usually masked by noise at room temperatures and in environments that interactstrongly with the systems under observation. Extreme isolation and low temperatures are often used to remove thesenuisances, and the extreme cold and high vacuum provided by dilution refrigerators is therefore an ideal environment forobserving quantum-enhanced behaviour. Oxford Instruments have a longstanding reputation for their expertise in providingcommercial machines that deliver such environments, and the Lancaster University team is highly skilled in exploiting theselow temperatures to manipulate, exploit and measure quantum behaviour.In this joint endeavour we will develop a new product that will help other users gain access to the ultra-low temperatureenvironment isolated from its surroundings. Traditional dilution refrigeration has required bulky dewars of liquid helium forthe first cooling stage. New "dry" cryogen-free dilution fridges do not need liquid helium. OI has pioneered this newtechnology and is market leader. We will now take the next step of reducing the size and cost of ownership, and increasingautomation. This will increase the uptake of this technology by users in the traditional markets of university laboratories andresearch institutes. It will also make it easier for industrial manufacturers to include it as a component in future equipmentand instrumentation that exploit those quantum-enhanced behaviours which require the ultra-low temperature environment.Examples here are the prototype solid-state quantum computer qubits and information processing devices for securecommunications which are based on the properties of superconducting quantum interference devices that only work atdilution refrigerator temperatures. Compact, automatic and less expensive fridges will be an obvious benefit in this market.Further, and as an example of this type of new technology, we will demonstrate that this new product will provide the idealenvironment for new types of sensor technology whose performance is enhanced by quantum mechanics. Here we willinvestigate how to go beyond current sensitivity and resolution limits in the sensing of magnetic fields. This is already usefulin a range of in-the-field applications from remote sensing of new oil/gas reserves to medical imaging of the brain and body.At the moment the state-of-the-art measures the effect of magnetic fields on superconducting junctions that are made fromniobium metal and cooled only to liquid helium temperatures of 4 degrees above absolute zero. By using new cryo-freetechnology we will be able to improve sensitivity in two ways. The first is by simply being colder, so that thermal noise isreduced. The second, more exciting way, is that there are materials which only become functional at these lowertemperatures, and we will be able to investigate new devices made in new ways from these materials. For instance we willbe able to replace niobium with superconducting aluminium, and use nanofabrication techniques to make hybridsemiconductor/superconductor/normal metal devices. We will also be able to investigate devices which contain graphene,where the lower temperatures enable electrons to travel much greater distances within the two-dimensional graphenesheet before being scattered from their path by noise.The anticipated outcome of our collaboration will be a prototype-ready design for a new cryo-free system that will usequantum-enhanced sensors to improve the detection of small magnetic fields.
这项拟议的可行性研究汇集了牛津仪器的工业合作伙伴和兰开斯特大学的学术合作伙伴,以解决将用户友好,紧凑,便携式机器推向市场的问题,用于当前和未来的量子技术商业应用,这些应用需要低噪声,低温,量子力学的影响通常被室温下的噪音和强烈相互作用的环境所掩盖。与被观察的系统进行比较。极端隔离和低温通常被用来消除这些干扰,因此稀释制冷机提供的极冷和高真空是观察量子增强行为的理想环境。牛津仪器公司在提供提供这种环境的商业机器方面享有长期声誉,而兰开斯特大学的团队在利用这种低温来操纵、利用和测量量子行为方面具有很高的技能。在这一共同努力中,我们将开发一种新产品,帮助其他用户获得与周围环境隔离的超低温环境。传统的稀释制冷需要庞大的液氦杜瓦瓶作为第一冷却级。新的“干式”无冷冻剂稀释冰箱不需要液氦。OI是这项新技术的先驱,是市场的领导者。我们现在将采取下一步措施,缩小规模,降低拥有成本,并提高自动化程度。这将增加大学实验室和研究机构传统市场用户对这项技术的吸收。这也将使工业制造商更容易将其作为未来设备和仪器的一个组件,利用那些需要超低温环境的量子增强行为。这里的例子是原型固态量子计算机量子比特和用于安全通信的信息处理设备,这些设备基于超导量子干涉设备的特性,只能在稀释冰箱温度下工作。紧凑、自动和便宜的冰箱将是这个市场的明显优势。此外,作为这种新技术的一个例子,我们将证明这种新产品将为新型传感器技术提供理想的环境,这种传感器技术的性能通过量子力学得到增强。在这里,我们将研究如何超越电流的灵敏度和分辨率的限制,在磁场的传感。这已经在从遥感新的石油/天然气储量到大脑和身体的医学成像的一系列现场应用中很有用。目前最先进的技术是测量磁场对超导结的影响,超导结是由铌金属制成的,只冷却到绝对零度以上4度的液氦温度。通过使用新的无冷冻技术,我们将能够从两个方面提高灵敏度。第一种是通过简单地降低温度,从而降低热噪声。第二个,更令人兴奋的方法是,有些材料只有在这些低温下才能发挥作用,我们将能够研究用这些材料以新的方式制造的新设备。例如,我们将能够用超导铝代替铌,并使用纳米纤维技术制造混合半导体/超导体/普通金属设备。我们还将能够研究含有石墨烯的设备,其中较低的温度使电子能够在二维石墨烯中行进更长的距离,然后被噪声从其路径散射。我们合作的预期成果将是一个新的无低温系统的原型设计,该系统将使用量子增强传感器来改善对小磁场的检测。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nanoelectronic primary thermometry below 4 mK.
- DOI:10.1038/ncomms10455
- 发表时间:2016-01-27
- 期刊:
- 影响因子:16.6
- 作者:Bradley DI;George RE;Gunnarsson D;Haley RP;Heikkinen H;Pashkin YA;Penttilä J;Prance JR;Prunnila M;Roschier L;Sarsby M
- 通讯作者:Sarsby M
On-chip magnetic cooling of a nanoelectronic device.
- DOI:10.1038/srep45566
- 发表时间:2017-04-04
- 期刊:
- 影响因子:4.6
- 作者:Bradley DI;Guénault AM;Gunnarsson D;Haley RP;Holt S;Jones AT;Pashkin YA;Penttilä J;Prance JR;Prunnila M;Roschier L
- 通讯作者:Roschier L
Graphene-based tunable SQUIDs
基于石墨烯的可调谐 SQUID
- DOI:10.1063/1.4981904
- 发表时间:2017
- 期刊:
- 影响因子:4
- 作者:Thompson M
- 通讯作者:Thompson M
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Haley其他文献
Spin dynamics at the dipole unlocking transition in3He-A
- DOI:
10.1007/bf00754567 - 发表时间:
1995-10-01 - 期刊:
- 影响因子:1.400
- 作者:
Henry Hall;John Hook;Richard Haley;Fergus Clancy - 通讯作者:
Fergus Clancy
NMR investigation of the magnetic susceptibility anisotropy in3He-A
- DOI:
10.1007/bf00753391 - 发表时间:
1995-11-01 - 期刊:
- 影响因子:1.400
- 作者:
Richard Haley;Allen Armstrong;Fergus Clancy;Antti Manninen;John Hook;Henry Hall - 通讯作者:
Henry Hall
Richard Haley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Haley', 18)}}的其他基金
Quantum Enhanced Superfluid Technologies for Dark Matter and Cosmology
用于暗物质和宇宙学的量子增强超流体技术
- 批准号:
ST/T006773/1 - 财政年份:2020
- 资助金额:
$ 13.14万 - 项目类别:
Research Grant
Superfluid 3He at UltraLow Temperatures
超低温下的超流体 3He
- 批准号:
EP/L000016/1 - 财政年份:2013
- 资助金额:
$ 13.14万 - 项目类别:
Research Grant
相似海外基金
Cryofree Dilution Refrigerator System
Cryofree 稀释冰箱系统
- 批准号:
407591113 - 财政年份:2018
- 资助金额:
$ 13.14万 - 项目类别:
Major Research Instrumentation
Prototype cryofree ultra low temperature environment for quantum enhanced sensors
用于量子增强传感器的原型冷冻超低温环境
- 批准号:
102672 - 财政年份:2016
- 资助金额:
$ 13.14万 - 项目类别:
Feasibility Studies
Development of a cryofree ultra low temperature environment for quantum enhanced sensors
量子增强传感器的无冷冻超低温环境的开发
- 批准号:
131879 - 财政年份:2015
- 资助金额:
$ 13.14万 - 项目类别:
Feasibility Studies