Algorithms that count: exploring the limits of tractability

重要的算法:探索可处理性的极限

基本信息

  • 批准号:
    EP/N004221/1
  • 负责人:
  • 金额:
    $ 46.12万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2015
  • 资助国家:
    英国
  • 起止时间:
    2015 至 无数据
  • 项目状态:
    已结题

项目摘要

Computational Complexity is the name given to the rigorous study of the resources required to solve specified computational problems. These are often decision problems (does there exist a structure satisfying certain properties?) or optimisation problems (what is the optimal structure?), but in this project we concentrate on a third class, namely counting problems. The phrase "counting problem" here is widely interpreted; examples of computational problems in this category include: (i) "find the number of satisfying assignments to a CNF Boolean formula", (ii) "evaluate the partition function of the Ising model (an extensively studied model in statistical physics) with interactions specified by a weighted graph", and (iii) "find the volume of a convex body". Example (i) is a straightforward counting problem, (ii) asks for the evaluation of a weighted sum over spin configurations, and (iii) is a definite integral, which is the limiting case of a summation. Crudely put, there are two objectives in computational complexity, namely lower bounds and upper bounds. Establishing a lower bound amounts to proving that a certain amount of resource, say, time or space, is required to achieve a certain computational goal. Generally, lower bounds can only be established under some complexity-theoretic assumption, the most famous being P not equal to NP. In this project we concentrate on the more optimistic activity of establishing upper bounds, i.e., designing and analysing algorithms for a computational task that provably require only a certain amount of resource. Part of the rationale for the stress on upper bounds is that substantial progress has been made in recent years on lower bounds, and it is important now to see how far these can be matched from the other direction. As the vast majority of counting problems are intractable, assuming exact solutions are sought, it will be necessary to investigate various escape routes: efficient approximation algorithms with guaranteed error bounds, algorithms that are provably efficient on restricted classes of problem instances, and parameterised algorithms whose bad behaviour can be controlled by a parameter that is assumed small in problem instances of practical interest. Another strand to the proposed research is to narrow the gap between what is efficient in theory and efficient in practice. In the classical theory, an algorithm is deemed to be efficient if it runs in time polynomial in the instance size. This theoretical notion of efficiency often corresponds to tractability in practice, but the correspondence is not so good in the context of counting problems, where Markov chain Monte Carlo is the most common solution technique.
计算复杂性是对解决特定计算问题所需资源的严格研究。这些通常是决策问题(是否存在满足某些属性的结构?)或优化问题(什么是最优结构?),但在这个项目中,我们专注于第三类,即计数问题。这里的“计数问题”一词有广泛的解释;这类计算问题的例子包括:(i)“找到CNF布尔公式的满意赋值的个数”,(ii)“用加权图指定的相互作用评估Ising模型(统计物理中广泛研究的模型)的配分函数”,以及(iii)“找到凸体的体积”。例(i)是一个简单的计数问题,(ii)要求对自旋构型的加权和求值,(iii)是一个定积分,它是求和的极限情况。粗略地说,计算复杂度有两个目标,即下界和上界。建立一个下界等于证明,要达到一定的计算目标,需要一定的资源,比如时间或空间。一般来说,下界只能在一些复杂性理论假设下建立,最著名的是P不等于NP。在这个项目中,我们专注于建立上界的更乐观的活动,即为可证明只需要一定量资源的计算任务设计和分析算法。强调上限的部分理由是,近年来在下限方面取得了实质性进展,现在重要的是,看看这些在多大程度上可以与另一个方向相匹配。由于绝大多数计数问题是难以处理的,假设要寻找精确的解,就有必要研究各种逃脱路线:具有保证误差范围的有效近似算法,在有限类别的问题实例上证明有效的算法,以及参数化算法,其不良行为可以通过在实际问题实例中假设很小的参数来控制。拟议研究的另一个方面是缩小理论效率和实践效率之间的差距。在经典理论中,如果算法在实例大小上以时间多项式的形式运行,则认为算法是有效的。这种效率的理论概念在实践中通常与可追溯性相对应,但在计数问题的背景下,这种对应关系并不那么好,在计数问题中,马尔可夫链蒙特卡罗是最常见的解决技术。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Uniform sampling through the Lovasz local lemma
Random Walks on Small World Networks
小世界网络上的随机游走
On the switch Markov chain for perfect matchings
在开关马尔可夫链上实现完美匹配
The sharp threshold for jigsaw percolation in random graphs
随机图中拼图渗透的尖锐阈值
A polynomial-time approximation algorithm for all-terminal network reliability
全终端网络可靠性的多项式时间逼近算法
  • DOI:
    10.48550/arxiv.1709.08561
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Guo H
  • 通讯作者:
    Guo H
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark Jerrum其他文献

Mark Jerrum的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark Jerrum', 18)}}的其他基金

Maths Research Associates 2021 QMUL
数学研究助理 2021 QMUL
  • 批准号:
    EP/W522508/1
  • 财政年份:
    2021
  • 资助金额:
    $ 46.12万
  • 项目类别:
    Research Grant
Sampling in Hereditary Classes
遗传阶层抽样
  • 批准号:
    EP/S016694/1
  • 财政年份:
    2019
  • 资助金额:
    $ 46.12万
  • 项目类别:
    Research Grant
Computational Counting
计算计数
  • 批准号:
    EP/I011935/1
  • 财政年份:
    2011
  • 资助金额:
    $ 46.12万
  • 项目类别:
    Research Grant
The Complexity of Counting in Constraint Satisfaction Problems
约束满足问题中计数的复杂性
  • 批准号:
    EP/E064906/1
  • 财政年份:
    2007
  • 资助金额:
    $ 46.12万
  • 项目类别:
    Research Grant

相似海外基金

Exploring exosomes in neurodevelopmental and neuropsychiatric diseases using brain organoids
使用脑类器官探索​​外泌体在神经发育和神经精神疾病中的作用
  • 批准号:
    10741385
  • 财政年份:
    2023
  • 资助金额:
    $ 46.12万
  • 项目类别:
Exploring neural crest stem cell-derived enteric neurogenesis in post-embryonic development and regeneration
探索胚胎后发育和再生中神经嵴干细胞衍生的肠神经发生
  • 批准号:
    10321660
  • 财政年份:
    2021
  • 资助金额:
    $ 46.12万
  • 项目类别:
Exploring neural circuit mechanisms of social contact and social isolation
探索社会接触和社会隔离的神经回路机制
  • 批准号:
    10159755
  • 财政年份:
    2019
  • 资助金额:
    $ 46.12万
  • 项目类别:
Exploring the shared genetic architecture of white blood cell variation and childhood acute lymphoblastic leukemia
探索白细胞变异和儿童急性淋巴细胞白血病的共同遗传结构
  • 批准号:
    10063853
  • 财政年份:
    2019
  • 资助金额:
    $ 46.12万
  • 项目类别:
Exploring neural circuit mechanisms of social contact and social isolation
探索社会接触和社会隔离的神经回路机制
  • 批准号:
    10378660
  • 财政年份:
    2019
  • 资助金额:
    $ 46.12万
  • 项目类别:
Exploring irisin as a novel target for Alzheimer's Disease
探索鸢尾素作为阿尔茨海默病的新靶点
  • 批准号:
    9919511
  • 财政年份:
    2019
  • 资助金额:
    $ 46.12万
  • 项目类别:
Exploring neural circuit mechanisms of social contact and social isolation
探索社会接触和社会隔离的神经回路机制
  • 批准号:
    10005962
  • 财政年份:
    2019
  • 资助金额:
    $ 46.12万
  • 项目类别:
Exploring a new therapeutic approach through targeting epigenetic enzymes in ALL
通过针对 ALL 的表观遗传酶探索新的治疗方法
  • 批准号:
    9150647
  • 财政年份:
    2015
  • 资助金额:
    $ 46.12万
  • 项目类别:
Exploring a new therapeutic approach through targeting epigenetic enzymes in ALL
通过针对 ALL 的表观遗传酶探索新的治疗方法
  • 批准号:
    9319231
  • 财政年份:
    2015
  • 资助金额:
    $ 46.12万
  • 项目类别:
Exploring antibody-Fc effector function in humanized mouse models of HIV latency
探索 HIV 潜伏期人源化小鼠模型中的抗体 Fc 效应子功能
  • 批准号:
    9050087
  • 财政年份:
    2015
  • 资助金额:
    $ 46.12万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了