RS Fellow - EPSRC grant (2014): Lattice-matched electrode-electrolyte interfaces for high-performance Li-batteries

RS 院士 - EPSRC 资助(2014 年):用于高性能锂电池的晶格匹配电极-电解质界面

基本信息

  • 批准号:
    EP/N004302/1
  • 负责人:
  • 金额:
    $ 30.79万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2015
  • 资助国家:
    英国
  • 起止时间:
    2015 至 无数据
  • 项目状态:
    已结题

项目摘要

Lithium-ion batteries are all around us. They are used for energy storage in portable electronics, hybrid-electric vehicles, even the Curiosity Mars rover. As we reduce our dependence on fossil fuels, the use of lithium-ion batteries will only increase. Today's commercial lithium-ion batteries, however, face problems of short lifespans - the degrading charge-time of a laptop or phone battery - and safety issues - illustrated recently by the fires reported on aircraft and in electric cars. If lithium-ion batteries are to be used more widely they must have both longer lifetimes and improved s!afety characteristics.One technology that may potentially address is an "all-solid-state" lithium-ion battery. Conventional batteries have liquid electrolytes that transport lithium ions between the cathode and anode as the battery is charged or discharged. These electrolytes are chemically unstable, and degrade with time - leading to reduced capacity - or can react explosively in the case of a short-circuit or intense heating. In an all-solid-state battery, these are replaced by ceramic solids that are chemically inert and robust, yet still allow lithium ions to move between the electrodes. The challenge is to develop solid electrolytes that meet these specifications of chemical stability and good lithium-ion conductivity, while also being electronically insulating.One of the limiting factors for battery performance is the rate at which lithium can move through the device: this dictates the speed with which it charges and the total power density of the battery. a specific issue for all-solid-state batteries is that even in the case of solid electrolytes that allow rapid lithium transport, transferring lithium between the electrolyte and an electrode (or vice-versa) can be slow, ultimately limiting the overall lithium transport rate. This ability of the boundary between electrode and electrolyte to impede the conduction of lithium ions is the "interfacial resistance", which should be low for high-power applications.In 1985 a patent was filed that proposed a strategy for designing solid-state batteries with low interfacial resistance: if the electrodes and electrolyte all have structures based on the same underlying crystal lattice, then it should be possible to find combinations of materials that are "lattice-matched", with similar crystal lattice dimensions for the electrodes and electrolyte. It was proposed that this would allow the lithium- conduction pathways to line up across the electrode-electrolyte interfaces, forming continuous channels with low interfacial resistance, and enabling fast ionic transport through the battery.The application of this idea has until recently been limited by an absence of promising solid electrolytes with crystal structures that permit lattice-matching with known solid electrodes. In 2013, however, a new family of solid-electrolytes was reported with the same underlying "spinel-structure" as a number of widely studied solid electrodes, breathing new life into this concept.This research project seeks to use computer simulations to understand how the chemical composition of spinel-structured lithium-electrolytes affects their suitability for lattice-matched solid-state batteries. We will construct new models that are able to describe numerically the motions and interactions of atoms that make up these materials. These models will then be used in large-scale computer simulations to study how differences in chemistry control the details of crystal structure and rates of lithium ion conduction in these materials. By extending these models to also describe electrode-electrolyte interfaces, we will directly calculate interfacial resistances, and explore the potential for "lattice-matching" as a strategy for the design of high-performance solid-state lithium-ion batteries.
锂离子电池无处不在。它们被用于便携式电子产品、混合动力汽车,甚至是好奇号火星漫游车的能量储存。随着我们减少对化石燃料的依赖,锂离子电池的使用只会增加。然而,今天的商用锂离子电池面临着寿命短的问题--笔记本电脑或手机电池充电时间的下降--以及安全问题--最近飞机和电动汽车上发生的火灾就证明了这一点。如果锂离子电池要得到更广泛的应用,它们必须既要有更长的寿命,又要有更好的S!安全特性。其中一项可能解决的技术是“全固态”锂离子电池。传统电池有液体电解液,当电池充电或放电时,液体电解液会在正负极之间传输锂离子。这些电解液在化学上不稳定,会随着时间的推移而降解--导致容量降低--或者在短路或强烈加热的情况下会发生爆炸反应。在全固态电池中,它们被化学惰性和坚固的陶瓷固体所取代,但仍然允许锂离子在电极之间移动。所面临的挑战是开发出既满足化学稳定性和良好的锂离子导电性,同时又具有电子绝缘性的固体电解液。电池性能的限制因素之一是锂在设备中的移动速度:这决定了充电的速度和电池的总功率密度。全固态电池的一个具体问题是,即使在允许快速锂传输的固体电解液的情况下,锂在电解液和电极之间的传输(反之亦然)可能会很慢,最终限制了整体锂传输速率。电极和电解液之间的边界阻碍锂离子传导的这种能力是“界面电阻”,对于高功率应用来说,它应该是低的。1985年,一项专利申请提出了一种设计低界面电阻的固态电池的策略:如果电极和电解液都具有基于相同晶格的结构,那么应该有可能找到“晶格匹配”的材料组合,电极和电解液具有相似的晶格尺寸。有人提出,这将允许锂传导路径在电极-电解液界面上排列,形成具有低界面电阻的连续通道,并使离子能够快速通过电池。直到最近,由于缺乏具有与已知固体电极晶格匹配的晶体结构的有前途的固体电解质,这一想法的应用一直受到限制。然而,在2013年,一种新的固体电解液家族被报道,它与一些被广泛研究的固体电极具有相同的基本“尖晶石结构”,为这一概念注入了新的活力。本研究项目试图通过计算机模拟来了解尖晶石结构的锂电解液的化学组成如何影响其对晶格匹配固态电池的适用性。我们将构建新的模型,能够以数字方式描述组成这些材料的原子的运动和相互作用。然后,这些模型将被用于大规模的计算机模拟,以研究化学差异如何控制这些材料中晶体结构和锂离子传导速度的细节。通过将这些模型扩展到描述电极-电解液界面,我们将直接计算界面电阻,并探索“晶格匹配”作为高性能固态锂离子电池设计策略的潜力。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Variation in surface energy and reduction drive of a metal oxide lithium-ion anode with stoichiometry: a DFT study of lithium titanate spinel surfaces
  • DOI:
    10.1039/c6ta05980e
  • 发表时间:
    2016-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. Morgan;J. Carrasco;G. Teobaldi
  • 通讯作者:
    B. Morgan;J. Carrasco;G. Teobaldi
crystal-torture: A crystal tortuosity module
crystal-torture:水晶曲折模块
Interfacial strain effects on lithium diffusion pathways in the spinel solid electrolyte Li-doped MgAl 2 O 4
  • DOI:
    10.1103/physrevmaterials.2.045403
  • 发表时间:
    2017-12
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    C. O’Rourke;B. Morgan
  • 通讯作者:
    C. O’Rourke;B. Morgan
bsym: A basic symmetry module
bsym:基本对称模块
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Benjamin Morgan其他文献

Fin du Globe: On Decadent Planets
Fin du Globe:在颓废的行星上
  • DOI:
    10.2979/victorianstudies.58.4.01
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Benjamin Morgan
  • 通讯作者:
    Benjamin Morgan
The Matter of Beauty: Materialism and the Self in Victorian Aesthetic Theory
美的问题:维多利亚时代美学理论中的唯物主义和自我
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Benjamin Morgan
  • 通讯作者:
    Benjamin Morgan
Intracellular carbon storage of microorganisms and resulting C sequestration in biosolids-amended agricultural soil
微生物的细胞内碳储存以及由此在经生物固体改良的农业土壤中导致的碳封存
  • DOI:
    10.1016/j.soilbio.2025.109836
  • 发表时间:
    2025-08-01
  • 期刊:
  • 影响因子:
    10.300
  • 作者:
    Guanglong Tian;Olawale Oladeji;Benjamin Morgan;Essam El-Naggar;Albert Cox;Heng Zhang;Edward Podczerwinski
  • 通讯作者:
    Edward Podczerwinski
Ecological Form
生态形态
  • DOI:
    10.2307/j.ctv7n0bsf
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nathan K. Hensley;P. Steer;L. Voskuil;Jesse Oak Taylor;Teresa Shewry;A. Rosenberg;Benjamin Morgan;E. Miller;Deanna K. Kreisel;A. Grener;Sukanya Banerjee;M. Allewaert;Karen Pinkus
  • 通讯作者:
    Karen Pinkus
Critical Empathy: Vernon Lee’s Aesthetics and the Origins of Close Reading
批判性移情:李弗农的美学与精读的起源
  • DOI:
    10.2979/victorianstudies.55.1.31
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Benjamin Morgan
  • 通讯作者:
    Benjamin Morgan

Benjamin Morgan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

RS Fellow - EPSRC grant (2016): Investigating Measurement Incompatibility in Quantum Theory
RS 研究员 - EPSRC 资助 (2016):研究量子理论中的测量不兼容性
  • 批准号:
    EP/R00644X/1
  • 财政年份:
    2017
  • 资助金额:
    $ 30.79万
  • 项目类别:
    Fellowship
RS Fellow - EPSRC grant (2016): Spatial fragmentations
RS 研究员 - EPSRC 拨款 (2016):空间碎片
  • 批准号:
    EP/R005249/1
  • 财政年份:
    2017
  • 资助金额:
    $ 30.79万
  • 项目类别:
    Fellowship
RS Fellow - EPSRC grant (2016): Realising the Automated Materials Synthesiser
RS 研究员 - EPSRC 资助 (2016):实现自动化材料合成器
  • 批准号:
    EP/R005931/1
  • 财政年份:
    2017
  • 资助金额:
    $ 30.79万
  • 项目类别:
    Fellowship
RS Fellow - EPSRC grant (2016): Algebraic and topological approaches for genomic data in molecular biology
RS 研究员 - EPSRC 资助(2016):分子生物学中基因组数据的代数和拓扑方法
  • 批准号:
    EP/R005125/1
  • 财政年份:
    2017
  • 资助金额:
    $ 30.79万
  • 项目类别:
    Fellowship
RS Fellow - EPSRC grant (2014): Mitigating spin-current relaxation in spin-orbit coupled graphene: towards spin current routing in 2D carbon
RS 研究员 - EPSRC 资助 (2014):减轻自旋轨道耦合石墨烯中的自旋电流弛豫:实现二维碳中的自旋电流路由
  • 批准号:
    EP/N004817/1
  • 财政年份:
    2015
  • 资助金额:
    $ 30.79万
  • 项目类别:
    Fellowship
RS Fellow - EPSRC grant (2014): Quantum computation as a programming language
RS 研究员 - EPSRC 资助 (2014):量子计算作为编程语言
  • 批准号:
    EP/N007387/1
  • 财政年份:
    2015
  • 资助金额:
    $ 30.79万
  • 项目类别:
    Fellowship
RS Fellow - EPSRC grant (2014): Exploring high temperature superconductivity in novel layered materials.
RS 研究员 - EPSRC 资助(2014 年):探索新型层状材料的高温超导性。
  • 批准号:
    EP/N005082/1
  • 财政年份:
    2015
  • 资助金额:
    $ 30.79万
  • 项目类别:
    Fellowship
RS Fellow - EPSRC grant (2014): Application of Tandem Non-Covalent Interactions to the Development of New Enantioselective Reactions
RS 研究员 - EPSRC 资助 (2014):串联非共价相互作用在新对映选择性反应开发中的应用
  • 批准号:
    EP/N005422/1
  • 财政年份:
    2015
  • 资助金额:
    $ 30.79万
  • 项目类别:
    Fellowship
RS Fellow - EPSRC grant (2014):Mathematical modelling of design strategies for membrane filtration.
RS 研究员 - EPSRC 资助(2014 年):膜过滤设计策略的数学建模。
  • 批准号:
    EP/N005147/1
  • 财政年份:
    2015
  • 资助金额:
    $ 30.79万
  • 项目类别:
    Fellowship
RS Fellow - EPSRC grant (2014): Ab initio many-body theory of plasmons in nanomaterials
RS 研究员 - EPSRC 资助 (2014):纳米材料中等离子体激元的从头多体理论
  • 批准号:
    EP/N005244/1
  • 财政年份:
    2015
  • 资助金额:
    $ 30.79万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了