Programming DNA topology: from folding DNA minicircles to revealing the spatial organization of bacterial genomes

DNA 拓扑编程:从折叠 DNA 小环到揭示细菌基因组的空间组织

基本信息

  • 批准号:
    EP/N027639/1
  • 负责人:
  • 金额:
    $ 78.08万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2016
  • 资助国家:
    英国
  • 起止时间:
    2016 至 无数据
  • 项目状态:
    已结题

项目摘要

While rapid DNA sequencing has led to significant increases in the amount of genetic information available, we are still far from a comprehensive understanding of how DNA operates. Recent experiments have shown that DNA looping and folding are essential mechanisms in the switching of genes between their on and off states and that different patterns of gene expression are strongly influenced by genomic spatial organisation. This has led to the idea that genetic information may also be encoded through DNA topology and highlights the importance of studying the physical properties of DNA and its interacting molecules. An understanding of DNA topology will provide us with the capacity to further control genetic information and to design genomes optimal for utilisation in synthetic biology. In this fellowship, I aim to obtain the ability to program and predict DNA topology on a broad range of length scales: from DNA minicircles around the kilo-bp (kbp) scale to bacterial genomes containing several mega-bps (Mbps).To tackle this issue, I propose to develop a physics-based computational methodology that will range from establishing protocols and models for atomistic and coarse-grained simulations to the development of a statistical-mechanics algorithm for the fast prediction of the topology of DNA. These theoretical methods will be complementary and will be supported by an appropriate set of experiments performed using a range of single molecule techniques, including atomic force microscopy (AFM) . Firstly, I plan to quantify the capacity of DNA to encode its own topology and its interdependence with DNA-recognising proteins by means of the design and modelling of artificially folded DNA minicircles. I will then transfer the acquired structural information towards developing an efficient prediction algorithm that will be converted into a "genome-wide DNA loop locator". As the apical part of a supercoiled DNA loop is determined by a single helical turn (approximately), an extraction of the fluctuations at the base-pair level will be sufficient to deal with sequences at the genomic scale. A selection of proof-of-concept systems will be used to elucidate the governing rules of DNA topology and to test the novel computational methodology. The gained technology could then be easily applied to a multitude of interesting cases soon after. The capability to program DNA minicircles with a specific conformation will have consequences on gene therapy because these tiny DNA molecules are being recognised as highly efficient agents for the introduction of genetic material into cells without negative side effects. In parallel, the "genome-wide DNA loop locator" will be used to predict the architecture of bacterial genomes and, as a consequence, will help in the design of genetically stable microorganisms with constitutively-expressed synthetic metabolic routes. Thus, if the proposed research is successful, its impact could be broad as it would lead to advances in the fields of healthcare and synthetic biology. It would benefit society in the longer term, through the development of new effective diagnoses and medicines and through increasing its capacity to tackle important socioeconomic challenges, including the supply of renewable energy, clean water and safe food.
虽然快速DNA测序使可用的遗传信息量显著增加,但我们仍然远远没有全面了解DNA的运作方式。最近的实验表明,DNA循环和折叠是基因在其开启和关闭状态之间切换的重要机制,并且基因表达的不同模式受到基因组空间组织的强烈影响。这导致了遗传信息也可能通过DNA拓扑结构编码的想法,并强调了研究DNA及其相互作用分子的物理性质的重要性。对DNA拓扑结构的理解将使我们有能力进一步控制遗传信息,并设计出最适合用于合成生物学的基因组。在这个奖学金,我的目标是获得编程和预测DNA拓扑结构在广泛的长度尺度的能力:从千bp(kbp)左右的DNA微环到包含几兆bp(Mbps)的细菌基因组。为了解决这个问题,我建议开发一种基于物理学的计算方法,从建立原子和粗糙的协议和模型,粒度模拟的发展,一个快速预测DNA的拓扑结构的螺旋力学算法。这些理论方法将是互补的,并将通过使用一系列单分子技术(包括原子力显微镜(AFM))进行的一组适当的实验来支持。首先,我计划通过人工折叠DNA微环的设计和建模来量化DNA编码其自身拓扑结构及其与DNA识别蛋白质的相互依赖性的能力。然后,我将把获得的结构信息转移到开发一个有效的预测算法上,该算法将被转换为“全基因组DNA环定位器”。由于超螺旋DNA环的顶端部分由单个螺旋圈(近似)决定,因此在碱基对水平上提取波动将足以处理基因组规模上的序列。一系列的概念验证系统将被用来阐明DNA拓扑结构的管理规则,并测试新的计算方法。所获得的技术可以很容易地应用于许多有趣的案例。编程具有特定构象的DNA微环的能力将对基因治疗产生影响,因为这些微小的DNA分子被认为是将遗传物质引入细胞而没有负面副作用的高效试剂。同时,“全基因组DNA环定位器”将用于预测细菌基因组的结构,因此,将有助于设计具有组成型表达的合成代谢途径的遗传稳定的微生物。因此,如果拟议的研究成功,其影响可能是广泛的,因为它将导致医疗保健和合成生物学领域的进步。从长远来看,它将通过开发新的有效诊断和药物,并通过提高其应对重要社会经济挑战的能力,包括供应可再生能源、清洁水和安全食品,造福社会。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Interference between Triplex and Protein Binding to Distal Sites on Supercoiled DNA.
  • DOI:
    10.1016/j.bpj.2016.12.034
  • 发表时间:
    2017-02
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    A. Noy;A. Maxwell;S. Harris
  • 通讯作者:
    A. Noy;A. Maxwell;S. Harris
Protein/DNA interactions in complex DNA topologies: expect the unexpected.
  • DOI:
    10.1007/s12551-016-0208-8
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Noy, Agnes;Sutthibutpong, Thana;A Harris, Sarah
  • 通讯作者:
    A Harris, Sarah
Diversification of DNA-binding specificity via permissive and specificity-switching mutations in the ParB/Noc protein family
通过 ParB/Noc 蛋白家族的允许突变和特异性转换突变实现 DNA 结合特异性的多样化
  • DOI:
    10.1101/724823
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jalal A
  • 通讯作者:
    Jalal A
Rolling Circle RNA Synthesis Catalysed by RNA
RNA 催化的滚环 RNA 合成
  • DOI:
    10.1101/2021.11.30.470609
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kristoffersen E
  • 通讯作者:
    Kristoffersen E
Elucidating the Role of Topological Constraint on the Structure of Overstretched DNA Using Fluorescence Polarization Microscopy.
  • DOI:
    10.1021/acs.jpcb.1c02708
  • 发表时间:
    2021-08-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Backer AS;King GA;Biebricher AS;Shepherd JW;Noy A;Leake MC;Heller I;Wuite GJL;Peterman EJG
  • 通讯作者:
    Peterman EJG
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Agnes Noy其他文献

DNA damage competes with sequence to pin a plectoneme
  • DOI:
    10.1016/j.bpj.2022.11.1281
  • 发表时间:
    2023-02-10
  • 期刊:
  • 影响因子:
  • 作者:
    Victoria E. Hill;Agnes Noy;Timothy D. Craggs
  • 通讯作者:
    Timothy D. Craggs
Exploring the structural dynamics of DNA using fluorescence polarization microscopy and optical tweezers
  • DOI:
    10.1016/j.bpj.2021.11.1349
  • 发表时间:
    2022-02-11
  • 期刊:
  • 影响因子:
  • 作者:
    Adam S. Backer;Graeme A. King;Andreas S. Biebricher;Jack Shepherd;Agnes Noy;Mark C. Leake;Iddo Heller;Gijs J. Wuite;Erwin J. Peterman
  • 通讯作者:
    Erwin J. Peterman

Agnes Noy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

LncRNA SNHG14调控miR-214-3p的DNA甲基化水平在支气管肺发育不良肺泡化阻滞的机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于内在抗炎和抗氧化功能的可注射 DNA 水凝胶高效负载牙髓干细胞促进脊髓损伤修复的作用研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
DNA2在精子发生中的功能以及其缺失导致男性不育的机制研究
  • 批准号:
    Z25H040004
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
DNA纳米聚合物拓扑形态的设计和调控
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
HMGCL通过H3K27乙酰化增强RAD52依赖的DNA损伤修复促进宫颈癌放疗抵抗的机制研究
  • 批准号:
    JCZRLH202500546
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
替尼泊苷抑制APEX1驱动DNA损伤在治疗肺癌中的作用及机制研究
  • 批准号:
    JCZRYB202500477
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
NEDD4泛素化调控CREB/miR-132轴诱发精子DNA碎片化在肥胖不育中的作用及机制
  • 批准号:
    QN25H200016
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
高强度DNA杂化纳米机器人在内体膜调控和核酸药物递送中的基础研究
  • 批准号:
    HDMZ25H300006
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
PLOD2的DNA低甲基化模式驱动内质网与线粒体代谢串扰诱导免疫微环境重塑和化疗耐药
  • 批准号:
    KLY25H160008
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于高特异性驱动三维多足DNA步行器的牛奶中痕量喹诺酮类抗生素一体化检测机理研究
  • 批准号:
    2025JJ60197
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Macromolecular Crowding effects on DNA mechanics, topology and transcription
大分子拥挤对 DNA 力学、拓扑和转录的影响
  • 批准号:
    10623720
  • 财政年份:
    2023
  • 资助金额:
    $ 78.08万
  • 项目类别:
Roles for nucleosomes and DNA topology in mitotic chromosome assembly
核小体和 DNA 拓扑在有丝分裂染色体组装中的作用
  • 批准号:
    22H02551
  • 财政年份:
    2022
  • 资助金额:
    $ 78.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Optimizing model parameters in lattice models of DNA topology
优化 DNA 拓扑晶格模型中的模型参数
  • 批准号:
    574924-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 78.08万
  • 项目类别:
    University Undergraduate Student Research Awards
Single-molecule visualization of topology-mediated interactions in supercoiled DNA
超螺旋 DNA 中拓扑介导的相互作用的单分子可视化
  • 批准号:
    519580-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 78.08万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Single-molecule visualization of topology-mediated interactions in supercoiled DNA
超螺旋 DNA 中拓扑介导的相互作用的单分子可视化
  • 批准号:
    519580-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 78.08万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Characterization of DNA Knot Topology Within a Conical Nanochannel
锥形纳米通道内 DNA 结拓扑的表征
  • 批准号:
    542238-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 78.08万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
The role of DNA methylation modifiers in shaping the hematopoietic differentiation topology
DNA甲基化修饰剂在塑造造血分化拓扑中的作用
  • 批准号:
    10308704
  • 财政年份:
    2019
  • 资助金额:
    $ 78.08万
  • 项目类别:
The role of DNA methylation modifiers in shaping the hematopoietic differentiation topology
DNA甲基化修饰剂在塑造造血分化拓扑中的作用
  • 批准号:
    10065012
  • 财政年份:
    2019
  • 资助金额:
    $ 78.08万
  • 项目类别:
Single-molecule visualization of topology-mediated interactions in supercoiled DNA
超螺旋 DNA 中拓扑介导的相互作用的单分子可视化
  • 批准号:
    519580-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 78.08万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Discovery of metabolic regulators of DNA topology and cellular responses to topoisomerase II inhibition
发现 DNA 拓扑代谢调节剂和细胞对拓扑异构酶 II 抑制的反应
  • 批准号:
    9766078
  • 财政年份:
    2018
  • 资助金额:
    $ 78.08万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了