Geodesics, extension of holomorphic functions and the spectral theory of multioperators
测地线、全纯函数的扩展和多算子谱理论
基本信息
- 批准号:EP/N03242X/1
- 负责人:
- 金额:$ 4.71万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
One of the most successful and beautiful branches of mathematics in the nineteenth and twentieth centuries was the theory of analytic functions. These are functions which are smooth enough to have a gradient at every point of a region of the complex plane. The theory has had enormous importance for the understanding of several branches of physics and engineering, as well as playing an essential role in pure mathematics. Since the 1920s or thereabouts there has been an analogous development of a theory of analytic functions of several variables, which is also significant for science and technology. In particular, some engineering design problems require the construction of functions of a single variable which are rational (that is, expressible by a formula involving only addition, multiplication and division), take their values in some prescribed target region of higher-dimensional complex space and meet some further specifications. For certain special target regions there is a well-developed theory already; this theory plays a significant role in `H infinity control', a branch of control engineering. The present project will provide the opportunity for the PI to study new operator-theoretic methods at the University of California at San Diego, mainly, from Professor Jim Agler. His deep understanding of several complex variables and operator-theoretic methods are vital for the project. The proposed research will extend existing theory to include other target regions of engineering relevance, building on discoveries about the geometry and function theory of such regions by many mathematicians. One of our principal aims is to develop a theory of rational functions from a disc or half-plane to regions such as the symmetrised bidisc which parallels the classical theory. There are substantial difficulties in carrying out such a development: here are three of them. Firstly, whereas the classical target regions are homogeneous, meaning that any point is like any other, the symmetrised bidisc is inhomogeneous, so that some points have special geometric properties. Secondly, whereas classical domains are convex, the symmetrised bidisc is not even isomorphic to a convex domain. Furthermore, the symmetrised bidisc has sharp corners, for which reason many of the results of mainstream several complex variables do not apply to it. Nevertheless, research over the past decade has shown that the symmetrised bidisc and some similar domains have a rich geometry and function theory, exhibiting fascinating new features that do not appear in classical domains. We shall exploit the close connection between the symmetrised bidisc and two classical domains (the bidisc and the unit ball of the space of 2 x 2 matrices) to identify sets in the symmetrized bidisc with the norm-preserving extension property and to get new properties of $\Gamma$-contractions. We intend to do likewise for other target domains, which we call quasi-Cartan domains, to indicate their close connection with the classical `Cartan domains'.The results of the project will be significant for researchers in several complex variables and in the theory of linear operators; there are many of both categories worldwide. They will also be significant for control engineers, particularly those who use the technique of `mu-synthesis' for the design of automatic controllers for linear plants subject to structured uncertainty.
十九世纪和二十世纪最成功、最美丽的数学分支之一是解析函数理论。这些函数足够平滑,可以在复平面区域的每个点处具有梯度。该理论对于理解物理和工程学的几个分支具有巨大的重要性,并且在纯数学中发挥着重要作用。自 20 年代左右以来,多变量解析函数理论也出现了类似的发展,这对于科学和技术也具有重要意义。特别是,一些工程设计问题需要构造有理的单个变量的函数(即,可以用仅涉及加法、乘法和除法的公式来表达),在高维复杂空间的某个规定的目标区域中取它们的值,并满足一些进一步的规范。对于某些特殊目标区域,已经有成熟的理论;该理论在控制工程的一个分支“H无穷控制”中发挥着重要作用。目前的项目将为 PI 提供在加州大学圣地亚哥分校主要由 Jim Agler 教授学习新算子理论方法的机会。他对几个复杂变量和算子理论方法的深刻理解对于该项目至关重要。拟议的研究将扩展现有理论,以包括工程相关的其他目标区域,以许多数学家关于这些区域的几何和函数理论的发现为基础。我们的主要目标之一是发展一种有理函数理论,从圆盘或半平面到类似于经典理论的对称双圆盘等区域。进行这样的开发存在很大的困难:以下是其中的三个。首先,经典的目标区域是均匀的,这意味着任何点都与其他点相似,而对称的 bidisc 是不均匀的,因此某些点具有特殊的几何属性。其次,虽然经典域是凸域,但对称 Bidisc 甚至不与凸域同构。此外,对称bidisc具有尖角,因此主流的几个复杂变量的许多结果不适用于它。然而,过去十年的研究表明,对称bidisc和一些类似的域具有丰富的几何和函数理论,展现出经典域中没有出现的令人着迷的新特征。我们将利用对称 bidisc 和两个经典域(bidisc 和 2 x 2 矩阵空间的单位球)之间的紧密联系来识别对称 bidisc 中具有范数保持扩展属性的集合,并获得 $\Gamma$ 收缩的新属性。我们打算对其他目标域(我们称之为准嘉当域)做同样的事情,以表明它们与经典“嘉当域”的密切联系。该项目的结果对于几个复杂变量和线性算子理论的研究人员来说具有重要意义;世界范围内这两个类别都有很多。它们对于控制工程师也很重要,特别是那些使用“mu-综合”技术来设计受结构不确定性影响的线性设备自动控制器的工程师。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Geodesics, Retracts, and the Norm-Preserving Extension Property in the Symmetrized Bidisc
对称 Bidisc 中的测地线、缩回和保范扩展特性
- DOI:10.1090/memo/1242
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Agler J
- 通讯作者:Agler J
Operator Analysis: Hilbert Space Methods in Complex Analysis
算子分析:复分析中的希尔伯特空间方法
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Agler
- 通讯作者:Agler
A Hilbert space approach to singularities of functions
函数奇点的希尔伯特空间方法
- DOI:10.1016/j.jfa.2022.109826
- 发表时间:2023
- 期刊:
- 影响因子:1.7
- 作者:Agler J
- 通讯作者:Agler J
A geometric characterization of the symmetrized bidisc
对称bidisc的几何特征
- DOI:10.1016/j.jmaa.2019.01.027
- 发表时间:2019
- 期刊:
- 影响因子:1.3
- 作者:Agler, Jim;Lykova, Zinaida;Young, N.J.
- 通讯作者:Young, N.J.
Non-commutative manifolds, the free square root and symmetric functions in two non-commuting variables
非交换流形,两个非交换变量中的自由平方根和对称函数
- DOI:10.1112/tlm3.12015
- 发表时间:2018
- 期刊:
- 影响因子:0.8
- 作者:Agler J
- 通讯作者:Agler J
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zinaida Lykova其他文献
Zinaida Lykova的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Large Amplitude Oscillatory Extension (LAOE)
大振幅振荡扩展 (LAOE)
- 批准号:
24K07332 - 财政年份:2024
- 资助金额:
$ 4.71万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Greener cleaner composites [extension]
更环保、更清洁的复合材料[扩展]
- 批准号:
MR/Y020057/1 - 财政年份:2024
- 资助金额:
$ 4.71万 - 项目类别:
Fellowship
Investigation of compounds that mimic the effects of calorie restriction on healthy life extension and their mechanisms of action
研究模拟热量限制对延长健康寿命的影响的化合物及其作用机制
- 批准号:
23H03331 - 财政年份:2023
- 资助金额:
$ 4.71万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CReDo+ Climate Resilience Demonstrator (extension to new climate risks)
CReDo 气候复原力演示器(扩展到新的气候风险)
- 批准号:
10061340 - 财政年份:2023
- 资助金额:
$ 4.71万 - 项目类别:
Feasibility Studies
Development of sustainable bionanocomposite materials for perishable foods & drinks shelf life extension: delivering better food for all
开发用于易腐烂食品的可持续生物纳米复合材料
- 批准号:
10075083 - 财政年份:2023
- 资助金额:
$ 4.71万 - 项目类别:
Collaborative R&D
Precision Collider Phenomenology: OpenLoops BSM Extension
精密对撞机现象学:OpenLoops BSM 扩展
- 批准号:
2888853 - 财政年份:2023
- 资助金额:
$ 4.71万 - 项目类别:
Studentship
Establishing and Optimizing a Prime Editing Method in Neurons for Treatment of Rett Syndrome
建立和优化用于治疗 Rett 综合征的神经元素数编辑方法
- 批准号:
10607549 - 财政年份:2023
- 资助金额:
$ 4.71万 - 项目类别:
Lifespan extension, Somatotropic signaling and Tauopathy
寿命延长、促生长信号传导和 Tau 蛋白病
- 批准号:
10661340 - 财政年份:2023
- 资助金额:
$ 4.71万 - 项目类别:
Impact of Medicaid Postpartum Coverage Extension and Mandated Postpartum Depression Screening on Care for Gestational Diabetes and Pregnancy-Induced Hypertension
医疗补助产后覆盖范围扩大和强制性产后抑郁症筛查对妊娠期糖尿病和妊娠高血压综合征护理的影响
- 批准号:
10749378 - 财政年份:2023
- 资助金额:
$ 4.71万 - 项目类别:
Patient Priorities in Lung Transplant: Quality of Life Outcomes to Inform Decision Making
肺移植中患者的优先事项:生活质量结果为决策提供依据
- 批准号:
10592041 - 财政年份:2023
- 资助金额:
$ 4.71万 - 项目类别:














{{item.name}}会员




