COMPACT VISIBLE FREQUENCY COMBS: THE MISSING LINK IN A VISION OF PERVASIVE QUANTUM TIMEKEEPING

紧凑型可见光频率梳:普及量子计时愿景中缺失的一环

基本信息

  • 批准号:
    EP/P005446/1
  • 负责人:
  • 金额:
    $ 69.23万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2016
  • 资助国家:
    英国
  • 起止时间:
    2016 至 无数据
  • 项目状态:
    已结题

项目摘要

Informed by the requirements of future precision atomic clocks, this project targets the development of an "optical frequency comb" -- a laser providing a thousands of regularly spaced optical frequencies which form a ruler in frequency that is a critical component in quantum timekeeping devices.Quantum technology research in the UK and internationally is developing small atomic clocks to which the frequency of a special laser (not a laser comb) can be locked with extremely high stability. Yet these clocks "tick too fast": the clock laser oscillates at about 500 trillion "ticks per second", far too quickly to allow it to be interfaced to real-world systems like computer networks and electronic navigation devices. The laser comb can be used like a gearwheel to reduce this rate to one more appropriate for everyday applications of about 10 billion ticks per second. In this sense the comb works exactly like the clockwork mechanism in a pendulum clock, reducing the faster ticks of the pendulum to less frequent increments in the positions of the minute and hour hands.To date, practical laser combs with the right technical characteristics have been difficult to produce, even with lab-scale dimensions. This project will address the need for compact combs as sub-systems within a practical optical clock--and the current absence of such technology--by developing a disruptive laser-comb architecture. This will be compatible with visible clock transitions in new ion-based time standards, and will have a scale suitable for integrating into quantum timekeeping devices needed by sectors from security, energy, geodesy, finance and defence.Our approach will leverage advances in ultrafast lasers and integrated nonlinear photonic devices, complementary technologies in which the investigators at Heriot-Watt and Glasgow Universities are world leaders. Areas of emphasis are the development of robustly packaged infrared pulsed lasers operating at around 10 GHz (10 billion "ticks per second"), and the efficient extension of these to the visible region by using chip-scale "super-continuum" devices prototyped in the material gallium arsenide and finally to be made from the material silicon nitride. The output of these lasers will be made into a frequency comb by using a combination of optical and electronic stabilization techniques.The project will be developed in close association with several academic and industrial partners who will contribute resources and expertise in lasers (Laser Quantum Ltd.), optoelectronic manufacturing (Optocap Ltd.), optical frequency metrology (NPL), optical frequency standards (EPSRC UK Quantum Technology Hub in Sensors and Metrology), optical systems engineering (Fraunhofer Centre for Applied Photonics) and expertise in end-user applications of combs (Dstl).Our partners have committed up to £527.5K cash and £182K in-kind support, and span the supply chain from devices and systems, to verification and end-users. This breadth and depth of commitment will ensure that the project gains real-world traction and will have an enduring impact.The modular comb targeted by the project resonates strongly with EPSRC's Photonics for Future Systems priority and addresses key portfolio areas of Optical Devices & Subsystems, Optoelectronic Devices & Circuits, Quantum Devices, Components & Systems and RF & Microwave Devices. By the end of the project we expect to have demonstrated and evaluated this novel laser-comb technology, as well as created considerable new knowledge and IP in the areas of ultrafast lasers and integrated nonlinear photonics. This will leave us in a strong position to translate the technology into systems of commercial and scientific benefit to our industrial and academic partners and wider society.
根据未来精密原子钟的要求,该项目的目标是开发一种“光学频率梳”——一种提供数千个有规则间隔的光学频率的激光,形成频率上的尺子,这是量子计时设备的关键组成部分。英国和国际上的量子技术研究正在开发小型原子钟,这种原子钟可以以极高的稳定性锁定一种特殊激光(不是激光梳)的频率。然而,这些时钟“滴答得太快”:时钟激光以每秒500万亿“滴答”的速度振荡,太快了,无法与计算机网络和电子导航设备等现实世界的系统相连接。激光梳可以像齿轮一样使用,将这个速率降低到一个更适合日常应用的大约每秒100亿次。从这个意义上讲,梳子的工作原理与摆钟的发条机制完全相似,它将摆钟的快速滴答声减少到分针和时针位置上较不频繁的增量。到目前为止,具有正确技术特征的实用激光梳子很难生产,即使具有实验室规模的尺寸。该项目将通过开发一种颠覆性的激光梳结构,解决紧凑梳作为实用光学时钟子系统的需求,以及目前缺乏此类技术的问题。这将与新的基于离子的时间标准中的可见时钟转换兼容,并且将具有适合集成到安全,能源,大地测量,金融和国防等部门所需的量子计时设备的规模。我们的方法将利用超快激光和集成非线性光子器件的进步,赫瑞瓦特大学和格拉斯哥大学的研究人员在这些互补技术方面处于世界领先地位。重点领域是开发工作频率约为10 GHz(每秒100亿次)的坚固封装红外脉冲激光器,以及通过使用芯片级“超连续体”器件将这些激光器有效地扩展到可见区域,该器件的原型材料是砷化镓,最终将由材料氮化硅制成。这些激光器的输出将通过结合光学和电子稳定技术制成频率梳。该项目将与几个学术和工业合作伙伴密切合作,他们将在激光(Laser Quantum Ltd)、光电制造(Optocap Ltd)、光频率计量(NPL)、光频率标准(EPSRC英国传感器和计量量子技术中心)、光学系统工程(弗劳恩霍夫应用光子学中心)和梳子终端用户应用(Dstl)方面提供资源和专业知识。我们的合作伙伴承诺提供高达527.5万英镑的现金和18.2万英镑的实物支持,并跨越从设备和系统到验证和最终用户的供应链。这种承诺的广度和深度将确保项目获得现实世界的牵引力,并将产生持久的影响。该项目的模块化梳子与EPSRC的未来系统光子学优先级产生了强烈的共鸣,并解决了光学器件和子系统、光电器件和电路、量子器件、组件和系统以及射频和微波器件的关键投资组合领域。到项目结束时,我们预计将展示和评估这种新颖的激光梳技术,并在超快激光和集成非线性光子学领域创造大量的新知识和知识产权。这将使我们处于有利地位,将技术转化为商业和科学系统,造福于我们的工业和学术合作伙伴以及更广泛的社会。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Three-element, self-starting Kerr-lens-modelocked 1-GHz Ti:sapphire oscillator pumped by a single laser diode.
由单个激光二极管泵浦的三元件自启动克尔透镜锁模 1 GHz 钛蓝宝石振荡器。
  • DOI:
    10.1364/oe.472533
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Ostapenko H
  • 通讯作者:
    Ostapenko H
Misalignment-free, Kerr-lens-modelocked Yb:Y2O3 2.2-GHz oscillator, amplified by a semiconductor optical amplifier.
无失准、克尔透镜锁模 Yb:Y2O3 2.2 GHz 振荡器,由半导体光放大器放大。
  • DOI:
    10.1364/oe.480767
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Ostapenko H
  • 通讯作者:
    Ostapenko H
Design, construction and characterisation of a diode-pumped, three-element, 1-GHz Kerr-lens-modelocked Ti:sapphire oscillator
二极管泵浦、三元件、1GHz 克尔透镜锁模钛蓝宝石振荡器的设计、构造和表征
  • DOI:
    10.1007/s00340-023-07969-1
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ostapenko H
  • 通讯作者:
    Ostapenko H
Towards a space-qualified Kerr-lens mode-locked laser.
迈向太空合格的克尔透镜锁模激光器。
  • DOI:
    10.1364/ol.439965
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Feng Y
  • 通讯作者:
    Feng Y
Hong-Ou-Mandel interference with a diode-pumped 1-GHz Ti:sapphire laser
二极管泵浦 1 GHz 钛蓝宝石激光器的红欧曼德尔干涉
  • DOI:
    10.1364/optcon.496583
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Morland I
  • 通讯作者:
    Morland I
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Derryck Reid其他文献

Ultrafast biophotonics
超快生物光子学
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Min Gu;Derryck Reid;Adela Ben
  • 通讯作者:
    Adela Ben

Derryck Reid的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Derryck Reid', 18)}}的其他基金

UK ELT: The next generation instrumentation suite for the Extremely Large Telescope
英国 ELT:用于超大望远镜的下一代仪器套件
  • 批准号:
    ST/Y005309/1
  • 财政年份:
    2024
  • 资助金额:
    $ 69.23万
  • 项目类别:
    Research Grant
UK Extremely Large Telescope Programme PPRP 2022
英国极大望远镜计划 PPRP 2022
  • 批准号:
    ST/X002306/1
  • 财政年份:
    2023
  • 资助金额:
    $ 69.23万
  • 项目类别:
    Research Grant
TICTAC: Turnkey, Inexpensive and Compact Ti:sapphire Astrocomb Concept
TICTAC:交钥匙、廉价且紧凑的钛蓝宝石 Astrocomb 概念
  • 批准号:
    ST/X004503/1
  • 财政年份:
    2023
  • 资助金额:
    $ 69.23万
  • 项目类别:
    Research Grant
Direct Comb-Line Measurement: A New Calibration Concept for Astronomical Spectrographs
直接梳线测量:天文摄谱仪的新校准概念
  • 批准号:
    ST/X002845/1
  • 财政年份:
    2022
  • 资助金额:
    $ 69.23万
  • 项目类别:
    Research Grant
E-ELT PPRP
电子ELT PPRP
  • 批准号:
    ST/S001328/1
  • 财政年份:
    2021
  • 资助金额:
    $ 69.23万
  • 项目类别:
    Research Grant
Astrocomb development for the ELT: enhancing capability with a modern laser platform
ELT 的 Astrocomb 开发:利用现代激光平台增强能力
  • 批准号:
    ST/W005468/1
  • 财政年份:
    2021
  • 资助金额:
    $ 69.23万
  • 项目类别:
    Research Grant
Quantitative multi-species hydrocarbon metrology in gas pipelines
天然气管道中多物种碳氢化合物的定量计量
  • 批准号:
    ST/T000635/1
  • 财政年份:
    2019
  • 资助金额:
    $ 69.23万
  • 项目类别:
    Research Grant
Quantitative multi-species hydrocarbon metrology in gas pipelines -- enhancing commercialization potential by extension to new laser wavelengths
天然气管道中的定量多物种碳氢化合物计量——通过扩展到新的激光波长来增强商业化潜力
  • 批准号:
    ST/T003251/1
  • 财政年份:
    2019
  • 资助金额:
    $ 69.23万
  • 项目类别:
    Research Grant
PISTACHIO: Photonic Imaging Strategies for Technical Art History and Conservation
开心果:技术艺术史和保护的光子成像策略
  • 批准号:
    EP/R033013/1
  • 财政年份:
    2018
  • 资助金额:
    $ 69.23万
  • 项目类别:
    Research Grant
Drone-Assisted Fourier-Transform Spectroscopy for Fugitive Emission Sensing
用于逸散发射传感的无人机辅助傅里叶变换光谱
  • 批准号:
    ST/P00699X/1
  • 财政年份:
    2017
  • 资助金额:
    $ 69.23万
  • 项目类别:
    Research Grant

相似海外基金

Precision Rulers for the Visible - Chip Scale Optical Frequency Combs
可见光精密尺 - 芯片级光学频率梳
  • 批准号:
    DE230100964
  • 财政年份:
    2023
  • 资助金额:
    $ 69.23万
  • 项目类别:
    Discovery Early Career Researcher Award
Swept source retinal visible optical coherence tomography using broadly tunable frequency doubling of NIR MEMS-VCSELs
使用近红外 MEMS-VCSEL 的宽可调倍频进行扫描源视网膜可见光学相干断层扫描
  • 批准号:
    10546927
  • 财政年份:
    2022
  • 资助金额:
    $ 69.23万
  • 项目类别:
Study of techniques for efficient nonlinear frequency conversion of fibre lasers to the visible wavelength band
光纤激光器可见光波段高效非线性频率转换技术研究
  • 批准号:
    2613918
  • 财政年份:
    2021
  • 资助金额:
    $ 69.23万
  • 项目类别:
    Studentship
Efficient Coding and Decoding Techniques for Hybrid Radio Frequency and Visible Light Communication Links
混合射频和可见光通信链路的高效编码和解码技术
  • 批准号:
    RGPIN-2017-05043
  • 财政年份:
    2021
  • 资助金额:
    $ 69.23万
  • 项目类别:
    Discovery Grants Program - Individual
Efficient Coding and Decoding Techniques for Hybrid Radio Frequency and Visible Light Communication Links
混合射频和可见光通信链路的高效编码和解码技术
  • 批准号:
    RGPIN-2017-05043
  • 财政年份:
    2020
  • 资助金额:
    $ 69.23万
  • 项目类别:
    Discovery Grants Program - Individual
Efficient Coding and Decoding Techniques for Hybrid Radio Frequency and Visible Light Communication Links
混合射频和可见光通信链路的高效编码和解码技术
  • 批准号:
    RGPIN-2017-05043
  • 财政年份:
    2019
  • 资助金额:
    $ 69.23万
  • 项目类别:
    Discovery Grants Program - Individual
Investigation of techniques for nonlinear frequency conversion of high power fibre lasers to the visible wavelength band
高功率光纤激光器非线性频率转换到可见光波段的技术研究
  • 批准号:
    2278614
  • 财政年份:
    2019
  • 资助金额:
    $ 69.23万
  • 项目类别:
    Studentship
Efficient Coding and Decoding Techniques for Hybrid Radio Frequency and Visible Light Communication Links
混合射频和可见光通信链路的高效编码和解码技术
  • 批准号:
    RGPIN-2017-05043
  • 财政年份:
    2018
  • 资助金额:
    $ 69.23万
  • 项目类别:
    Discovery Grants Program - Individual
Efficient Coding and Decoding Techniques for Hybrid Radio Frequency and Visible Light Communication Links
混合射频和可见光通信链路的高效编码和解码技术
  • 批准号:
    RGPIN-2017-05043
  • 财政年份:
    2017
  • 资助金额:
    $ 69.23万
  • 项目类别:
    Discovery Grants Program - Individual
NeTS: Small: RUI: Hybrid Visible-Light and Radio-Frequency Communications with Integrated Medium-Access Control
NeTS:小型:RUI:具有集成介质访问控制的混合可见光和射频通信
  • 批准号:
    1618646
  • 财政年份:
    2016
  • 资助金额:
    $ 69.23万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了