Computational Modelling of the Formation and Stability of Supported Particles of Catalytic Importance
具有催化重要性的负载颗粒的形成和稳定性的计算模型
基本信息
- 批准号:EP/P005845/1
- 负责人:
- 金额:$ 12.66万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2017
- 资助国家:英国
- 起止时间:2017 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Since modern society demands a higher quality of life base on efficient technology and clean energy, contemporary scientists focus on new materials with particular properties performing under environmental friendly conditions. Structures of less than 100 nano-meters in size present different properties from those of bulk materials. This scale has opened new research boundaries in a growing field, with wide-ranging implications. For example, current industries use nano-materials during the fabrication of a large number of everyday-products. In chemical industries these fine particles are commonly dispersed metals on support materials reducing the cost and waste yields during product manufacture. However, scientists follow primarily a ''mix and try'' approach for the synthesis because of the complexity of the formation process and stability nano-structures, which are affected by multiple parameters, such as temperature, pressure and metal precursor. Particle performance is dependent on their size and shape. Therefore we aim to identify computationally the thermodynamic and kinetic descriptors affecting the growth and stability of metal particles supported on specific surfaces. This project will allow us to unravel the effects of the support, the metal and the size of nano-particles while considering e.g. particles shape and diffusion across the surface, which will help to understand processes such as sintering and deactivation of the catalyst under working conditions. In particular, we propose to combine a number of late transition metals with well-characterised surfaces because of their importance in industrial catalysis and the extensive experimental data available. The first goal of this challenging task is to understand the mechanism needed to build stable clusters from where the particle will grow. We will study the particles' interaction and diffusion on the surface and the feasibility of nearby particles to agglomerate. The second major goal is to identify the parameters modifying the growth processes along particular directions leading to different particle shapes such as sheets, wires, flakes. The reactivity of these structures will also be evaluated against common molecules such as molecular oxygen and water as both are present in oxidation reactions and in energy harvesting systems. The activity towards the activation and dissociation of molecular oxygen is important for reducing industrial waste related with oxidation processes. The last goal is to combine the previous results in a kinetic model to predict a durable nano-structure with applications in industry and energy technologies.We will carry out this investigation in an effective and reliable way by combining a range of informatics tools which provide atomic-level resolution of the nano-structures and the supporting surface with accurate details e.g. oxidation state of the metal at the interface with the support. The combinations of these computational methods will allow us to study the factors controlling nucleation, growth and the shape of the supported metallic particles. The results will be validated by our experimental partners in the Cardiff Catalysis Institute and at the UK Catalysis Hub. With the success of this innovative research, we will provide detailed understanding of the parameters controlling the sintering of supported structures leading to undesirable properties e.g. loss of catalytic performance. The knowledge derived from this research is applicable to many chemical industries and academic researchers. We will disseminate the work across a wide range of fields. Within Cardiff Catalysis Institute and the assistance provided by association with the UK Catalysis Hub, we will outreach and engage the public which will be of importance in a project on such a topical theme.
由于现代社会在高效技术和清洁能源的基础上要求更高的生活质量,当代科学家专注于在环境友好的条件下表现出特殊性能的新材料。尺寸小于100纳米的结构呈现出与块体材料不同的性质。这一规模在一个不断增长的领域开辟了新的研究边界,具有广泛的影响。例如,目前的工业在制造大量日用品时使用纳米材料。在化学工业中,这些细小的颗粒通常是分散在载体材料上的金属,降低了产品制造过程中的成本和废品率。然而,由于纳米结构的形成过程和稳定性受温度、压力和金属前体等多个参数的影响,科学家们主要采用混合尝试的方法来合成纳米结构。颗粒的性能取决于它们的大小和形状。因此,我们的目标是通过计算确定影响金属颗粒在特定表面上的生长和稳定性的热力学和动力学描述符。该项目将使我们能够揭示载体、金属和纳米颗粒大小的影响,同时考虑颗粒形状和在表面的扩散,这将有助于了解催化剂在工作条件下的烧结和失活等过程。特别是,我们建议将一些后过渡金属与特征良好的表面结合起来,因为它们在工业催化中的重要性以及可用的大量实验数据。这项具有挑战性的任务的第一个目标是了解建立稳定星团所需的机制,粒子将从那里生长。我们将研究颗粒在表面的相互作用和扩散,以及附近颗粒团聚的可能性。第二个主要目标是确定沿着特定方向改变生长过程的参数,从而导致不同的颗粒形状,如片状、线状、片状。这些结构的反应性也将针对常见的分子,如分子氧和水进行评估,因为这两者都存在于氧化反应和能量收集系统中。分子氧的活化和解离活性对于减少与氧化过程相关的工业废物具有重要意义。最后一个目标是将之前的结果结合到一个动力学模型中,以预测耐用的纳米结构在工业和能源技术中的应用。我们将通过结合一系列信息学工具来有效和可靠地进行这项研究,这些工具可以提供纳米结构和载体表面的原子级分辨率,并提供准确的细节,如金属在与载体的界面上的氧化状态。这些计算方法的结合将使我们能够研究控制成核、生长和所支持的金属颗粒形状的因素。我们在加的夫催化研究所和英国催化中心的实验合作伙伴将验证结果。随着这项创新研究的成功,我们将详细了解控制支撑结构烧结的参数,这些参数会导致不良性能,例如催化剂性能的丧失。本研究所获得的知识适用于许多化工行业和学术研究人员。我们将在广泛的领域传播这项工作。在加的夫催化研究所和与英国催化中心联合提供的援助下,我们将与公众接触,这在这样一个热门主题的项目中将是重要的。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Biomass hydrodeoxygenation catalysts innovation from atomistic activity predictors
- DOI:10.1098/rsta.2020.0056
- 发表时间:2020-07
- 期刊:
- 影响因子:0
- 作者:Fabian Morteo-Flores;Julien Engel;A. Roldan
- 通讯作者:Fabian Morteo-Flores;Julien Engel;A. Roldan
Ostwald ripening microkinetic simulation of Au clusters on MgO(0 0 1)
- DOI:10.1016/j.apsusc.2021.151317
- 发表时间:2022-01
- 期刊:
- 影响因子:6.7
- 作者:Samantha Francis;A. Boucher;Glenn Jones;A. Roldan
- 通讯作者:Samantha Francis;A. Boucher;Glenn Jones;A. Roldan
Symmetry analysis of irregular objects
不规则物体的对称性分析
- DOI:10.1007/s10910-022-01423-x
- 发表时间:2022
- 期刊:
- 影响因子:1.7
- 作者:Beevers C
- 通讯作者:Beevers C
Controlling the Selectivity of Supported Ru Nanoparticles During Glycerol Hydrogenolysis: C-O vs C-C Cleavage
控制甘油氢解过程中负载 Ru 纳米粒子的选择性:C-O 与 C-C 裂解
- DOI:10.1002/cctc.202001881
- 发表时间:2021
- 期刊:
- 影响因子:4.5
- 作者:Guadix-Montero S
- 通讯作者:Guadix-Montero S
Numerical data and further representations on descriptors correlation from Biomass hydrodeoxygenation catalysts innovation from atomistic activity predictors
原子活性预测的生物质加氢脱氧催化剂创新的描述符相关性的数值数据和进一步表示
- DOI:10.6084/m9.figshare.12429290
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Morteo-Flores F
- 通讯作者:Morteo-Flores F
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alberto Roldan Martinez其他文献
Alberto Roldan Martinez的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Improving modelling of compact binary evolution.
- 批准号:10903001
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Domino - Computational Fluid Dynamics Modelling of Ink Droplet Breakup for Mitigating Mist Formation during inkjet printing
Domino - 墨滴破碎的计算流体动力学模型,用于减轻喷墨打印过程中的雾气形成
- 批准号:
10090067 - 财政年份:2024
- 资助金额:
$ 12.66万 - 项目类别:
Collaborative R&D
CoMoBio: Computational Modelling of the Formation of Biofilm Microbial Systems
CoMoBio:生物膜微生物系统形成的计算模型
- 批准号:
2746335 - 财政年份:2022
- 资助金额:
$ 12.66万 - 项目类别:
Studentship
Experimental modelling river ice jam formation
河流冰塞形成的实验模拟
- 批准号:
572446-2022 - 财政年份:2022
- 资助金额:
$ 12.66万 - 项目类别:
University Undergraduate Student Research Awards
Mathematical modelling of brain formation to map species variation and developmental malformations.
大脑形成的数学模型,以绘制物种变异和发育畸形图。
- 批准号:
2748821 - 财政年份:2022
- 资助金额:
$ 12.66万 - 项目类别:
Studentship
Modelling Crack Behaviour During Formation and Growth of Liquid Metal Embrittlement
模拟液态金属脆化形成和增长过程中的裂纹行为
- 批准号:
RGPIN-2019-05649 - 财政年份:2022
- 资助金额:
$ 12.66万 - 项目类别:
Discovery Grants Program - Individual
Understanding Soot Formation from Combustion with Numerical Modelling
通过数值模拟了解燃烧过程中烟灰的形成
- 批准号:
RGPIN-2019-04628 - 财政年份:2022
- 资助金额:
$ 12.66万 - 项目类别:
Discovery Grants Program - Individual
Modelling effects of dark matter physics on early universe structure formation
模拟暗物质物理对早期宇宙结构形成的影响
- 批准号:
533617-2019 - 财政年份:2021
- 资助金额:
$ 12.66万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Understanding Soot Formation from Combustion with Numerical Modelling
通过数值模拟了解燃烧过程中烟灰的形成
- 批准号:
RGPIN-2019-04628 - 财政年份:2021
- 资助金额:
$ 12.66万 - 项目类别:
Discovery Grants Program - Individual
MODELLING DUST FORMATION IN A FUSION DEVICE
模拟聚变装置中的灰尘形成
- 批准号:
2601491 - 财政年份:2021
- 资助金额:
$ 12.66万 - 项目类别:
Studentship
Modelling Image Formation and In-Camera Imaging Pipelines
图像形成建模和相机内成像管道
- 批准号:
RGPIN-2017-05637 - 财政年份:2021
- 资助金额:
$ 12.66万 - 项目类别:
Discovery Grants Program - Individual