Laser-engineered nanocomposites for sensing applications
用于传感应用的激光工程纳米复合材料
基本信息
- 批准号:EP/P008135/1
- 负责人:
- 金额:$ 12.88万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2017
- 资助国家:英国
- 起止时间:2017 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Surface-Enhanced Raman Scattering (SERS) is an extremely powerful optical detection platform for the development of sensitive and quantitative analytical methods suitable for real-time monitoring. This technique provides information about the vibronic 'fingerprint' of a molecule located close to plasmonic nanostructures and therefore allows for a unique classification of the type of analyte detected. This method has also been proven to have a single-molecule detection capability. SERS-based approaches have enabled a number of important applications in bioanalytical sensing, such as in vivo tumour targeting, glucose sensing at clinically relevant concentrations and microbial system analysis, and are considered a major prerequisite for progress in areas such as nanobiotechnology and personalised medicine. In spite of the apparent advantages over commonly used fluorescence-based methods, SERS is yet to be established as an analytical tool. This is, in part, due to the fact that small variations in the SERS substrate (preparation, aggregation, surface morphology, etc.) have drastic effects on the SERS performance. Therefore the stability and reproducibility issues of SERS-active substrates have to be addressed in order to facilitate its application in quantitative analysis.Current fabrication techniques of SERS substrates with moderate to high enhancement factors, and reproducible and uniform responses are dominated by e-beam lithography, nano-imprint, self-assembled nanosphere, hybrid nanoporous lithography methods, etc. These techniques are still costly and rather cumbersome for production of large area SERS substrates, hence the high price of commercially available SERS platforms. The focus of this project is to demonstrate novel SERS platforms based on laser-engineered nanocomposite systems for dramatically improved performance and fabrication control, addressing current SERS materials limitations. Tailored Ag-/Au-ion and Ag-/Au-nanoparticle doped substrates with different dopant concentrations and volume filling factors will be fabricated suitable for SERS analysis with frequently used excitation wavelengths in the spectral region from 400 to 1000 nm. A spatially selective nanocomposite annealing technique will be developed in order to realise large area planar platforms with controllable geometry and reproducible enhancement factors, allowing a step change in fabrication of robust sensing platforms for quantitative SERS analysis. Furthermore, the proposed material systems will form the building blocks of a future microfluidic sensing devices for biomedical, environmental and security applicatons.
表面增强拉曼散射 (SERS) 是一个极其强大的光学检测平台,用于开发适合实时监测的灵敏定量分析方法。该技术提供了有关靠近等离子体纳米结构的分子的振动“指纹”的信息,因此可以对检测到的分析物类型进行独特的分类。该方法也被证明具有单分子检测能力。基于SERS的方法在生物分析传感领域实现了许多重要应用,例如体内肿瘤靶向、临床相关浓度的葡萄糖传感和微生物系统分析,并被认为是纳米生物技术和个性化医疗等领域取得进展的主要先决条件。尽管与常用的基于荧光的方法相比具有明显的优势,但 SERS 尚未被确立为一种分析工具。这部分是由于 SERS 基底(制备、聚集、表面形态等)的微小变化会对 SERS 性能产生巨大影响。因此,必须解决SERS活性基底的稳定性和重现性问题,以促进其在定量分析中的应用。目前具有中高增强因子、可重现且均匀响应的SERS基底制备技术主要以电子束光刻、纳米压印、自组装纳米球、混合纳米多孔光刻方法等为主。 对于大面积 SERS 基底的生产来说,技术仍然昂贵且相当麻烦,因此商用 SERS 平台的价格很高。该项目的重点是展示基于激光工程纳米复合材料系统的新型 SERS 平台,可显着提高性能和制造控制,解决当前 SERS 材料的局限性。将制造具有不同掺杂剂浓度和体积填充因子的定制银/金离子和银/金纳米粒子掺杂基板,适用于经常使用的激发波长在 400 至 1000 nm 光谱范围内的 SERS 分析。将开发空间选择性纳米复合材料退火技术,以实现具有可控几何形状和可重复增强因子的大面积平面平台,从而使用于定量 SERS 分析的稳健传感平台的制造发生阶跃变化。此外,所提出的材料系统将构成未来用于生物医学、环境和安全应用的微流体传感设备的构建模块。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
High performance SERS platforms via parametric optimization of the laser-assisted photodeposition of silver and gold nanoparticles
- DOI:10.1364/ome.437900
- 发表时间:2021-09
- 期刊:
- 影响因子:2.8
- 作者:Manuel Hoffmann;S. Wackerow;A. Abdolvand;S. Zolotovskaya
- 通讯作者:Manuel Hoffmann;S. Wackerow;A. Abdolvand;S. Zolotovskaya
Inkjet printing of high-concentration particle-free platinum inks
- DOI:10.1016/j.matdes.2021.110377
- 发表时间:2022-01-04
- 期刊:
- 影响因子:8.4
- 作者:Grant, Timothy D.;Hourd, Andrew C.;Abdolvand, Amin
- 通讯作者:Abdolvand, Amin
Plasma enhanced inkjet printing of particle-free silver ink on polyester fabric for electronic devices
- DOI:10.1016/j.mne.2021.100103
- 发表时间:2022-04-01
- 期刊:
- 影响因子:0
- 作者:Jones, Thomas D. A.;Hourd, Andrew C.;Tai, Chao-Yi
- 通讯作者:Tai, Chao-Yi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Svetlana Zolotovskaya其他文献
Fabrication of a near-infrared fluorescence-emitting SiOsub2/sub-AuZnFeSeS quantum dots-molecularly imprinted polymer nanocomposite for the ultrasensitive fluorescence detection of levamisole
用于左旋咪唑超灵敏荧光检测的近红外发射 SiO₂-AuZnFeSeS 量子点-分子印迹聚合物纳米复合材料的制备
- DOI:
10.1016/j.colsurfa.2022.129013 - 发表时间:
2022-08-05 - 期刊:
- 影响因子:5.400
- 作者:
Oluwasesan Adegoke;Svetlana Zolotovskaya;Amin Abdolvand;Niamh Nic Daeid - 通讯作者:
Niamh Nic Daeid
Svetlana Zolotovskaya的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Svetlana Zolotovskaya', 18)}}的其他基金
Laser-engineered nanocomposites for sensing applications
用于传感应用的激光工程纳米复合材料
- 批准号:
EP/P008135/2 - 财政年份:2018
- 资助金额:
$ 12.88万 - 项目类别:
Research Grant
相似国自然基金
基于AMPK/PGC-1α信号轴的工程化外泌体靶向调控BMSCs能量代谢重编程在老年机体骨修复中的作用及其机制研究
- 批准号:82370920
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
重复荷载作用下ECC材料的疲劳性能及力学模型研究
- 批准号:51408487
- 批准年份:2014
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Rubber-CNC nanocomposites for engineered material applications
用于工程材料应用的橡胶-CNC 纳米复合材料
- 批准号:
547525-2020 - 财政年份:2022
- 资助金额:
$ 12.88万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Engineered Mineral Nanoparticles and Nanocomposites: A Versatile Multifunctional Platform for 3D Bioprinting and Tissue Engineering
工程矿物纳米颗粒和纳米复合材料:用于 3D 生物打印和组织工程的多功能平台
- 批准号:
RGPAS-2020-00120 - 财政年份:2022
- 资助金额:
$ 12.88万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Engineered Mineral Nanoparticles and Nanocomposites: A Versatile Multifunctional Platform for 3D Bioprinting and Tissue Engineering
工程矿物纳米颗粒和纳米复合材料:用于 3D 生物打印和组织工程的多功能平台
- 批准号:
RGPIN-2020-06497 - 财政年份:2022
- 资助金额:
$ 12.88万 - 项目类别:
Discovery Grants Program - Individual
Engineered Mineral Nanoparticles and Nanocomposites: A Versatile Multifunctional Platform for 3D Bioprinting and Tissue Engineering
工程矿物纳米颗粒和纳米复合材料:用于 3D 生物打印和组织工程的多功能平台
- 批准号:
RGPAS-2020-00120 - 财政年份:2021
- 资助金额:
$ 12.88万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Rubber-CNC nanocomposites for engineered material applications
用于工程材料应用的橡胶-CNC 纳米复合材料
- 批准号:
547525-2020 - 财政年份:2021
- 资助金额:
$ 12.88万 - 项目类别:
Postgraduate Scholarships - Doctoral
Engineered Mineral Nanoparticles and Nanocomposites: A Versatile Multifunctional Platform for 3D Bioprinting and Tissue Engineering
工程矿物纳米颗粒和纳米复合材料:用于 3D 生物打印和组织工程的多功能平台
- 批准号:
RGPIN-2020-06497 - 财政年份:2021
- 资助金额:
$ 12.88万 - 项目类别:
Discovery Grants Program - Individual
Rubber-CNC nanocomposites for engineered material applications
用于工程材料应用的橡胶-CNC 纳米复合材料
- 批准号:
547525-2020 - 财政年份:2020
- 资助金额:
$ 12.88万 - 项目类别:
Postgraduate Scholarships - Doctoral
Engineered Mineral Nanoparticles and Nanocomposites: A Versatile Multifunctional Platform for 3D Bioprinting and Tissue Engineering
工程矿物纳米颗粒和纳米复合材料:用于 3D 生物打印和组织工程的多功能平台
- 批准号:
RGPIN-2020-06497 - 财政年份:2020
- 资助金额:
$ 12.88万 - 项目类别:
Discovery Grants Program - Individual
Engineered Mineral Nanoparticles and Nanocomposites: A Versatile Multifunctional Platform for 3D Bioprinting and Tissue Engineering
工程矿物纳米颗粒和纳米复合材料:用于 3D 生物打印和组织工程的多功能平台
- 批准号:
RGPAS-2020-00120 - 财政年份:2020
- 资助金额:
$ 12.88万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Engineered Mineral Nanoparticles and Nanocomposites: A Versatile Multifunctional Platform for 3D Bioprinting and Tissue Engineering
工程矿物纳米颗粒和纳米复合材料:用于 3D 生物打印和组织工程的多功能平台
- 批准号:
DGECR-2020-00485 - 财政年份:2020
- 资助金额:
$ 12.88万 - 项目类别:
Discovery Launch Supplement














{{item.name}}会员




