Novel Bio-Inspired 'Smart' Joint for Prosthetics and Robotics Lower Limbs

用于假肢和机器人下肢的新型仿生“智能”关节

基本信息

  • 批准号:
    EP/P022588/1
  • 负责人:
  • 金额:
    $ 12.88万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2017
  • 资助国家:
    英国
  • 起止时间:
    2017 至 无数据
  • 项目状态:
    已结题

项目摘要

At present there are over 90,000 new cases of knee replacements and leg amputations every year in the UK alone. This is equivalent to approximately one every six minutes. Currently between 5 - 6,000 major limb amputations are performed in the UK each year and trauma accounts for approximately 55% of them. Lower limb amputation has a profound effect on activities of daily living and not all amputees are able to tolerate or use a prosthesis. Therefore, it is essential that the prosthesis is comfortable and adapted to be used by patients in order to enhance their daily activities. Artificial knee joints are important medical devices that enable many people to maintain walking and running functions. In working towards this target, researchers have repeatedly missed the key role held by the correlation between the soft tissues (ligaments) and the structure (bones) in human-like locomotion. Biological joints demonstrate multi-functionality by integrating high conformity, compactness and low friction. These functions are crucial when designing a functional and robust joint by including this separation of functions at the conceptual stage.Though there is still little known about the exact implications and mechanisms involved while performing human movement, recent engineering research into the mechanics of the ligaments and the analysis of the knee joint in compression has produced models and simulations that have shed light on some of the possible roles of the human knee features. Therefore, we believe that this separation of functions into the design process of prosthetic joint is essential to facilitate design optimisation.Researchers are actively engaged in developing wearable devices including prosthetics that are increasingly embedding control and electronics sub-systems making them more autonomous and 'smarter'. On the other hand, limitations on space and power mean that artificial limb joints (for robots or prosthetics) must be highly optimised for mechanical performance in areas such as stiffness, strength, friction, mechanical advantage, backlash and endurance.Current trends in the design of artificial lower limbs, ranging from robotic articulations to prostheses for lower limb amputees, favour the utilisation of engineered joints, which typically are composed of a pin joint containing a hinge-pin and ball bearings. Particular prosthetic knee joints (polycentric) contain four-bar mechanisms in order to produce a moving centre of rotation as is the case with the human knee. There are two main categories of control for prosthetic knee joints - microprocessor control (use of an electronic unit, evaluating and making internal adjustments to control the motion) and mechanical control (use of a mechanical hinge, automatically controlled by the mechanism).The main purpose of this work is to further the state-of-the-art in prosthetics design and lower robotic limbs for transfemoral (above knee) amputees and humanoids robots in areas relevant to artificial devices and their uses for locomotion including walking, climbing stairs, squatting and also stability. This research will combine the relationship between three areas: the technological advancements of lower robotic limbs, knee implant design for total knee replacement, and the emergence of 'smart' prosthetics.In this two-year programme, we will investigate the feasibility and development of a novel bio-inspired prosthetic joint that will exploit the key and beneficial features of human knee joint. This research will be achieved by featuring a progressive bottom up approach towards the design and test of the bio-inspired 'smart' joint. A comparative investigation with respect to human performance (energy consumption and gait efficiency) between the novel bio-inspired joint against current prosthetics provided by the industrial partners will be undertaken with the contribution of a para-triathlete gold medallist in the Rio Paralympics 2016.
目前,仅在英国,每年就有超过90,000例新的膝盖置换和腿截肢。这相当于每六分钟大约每六分钟。目前,每年在英国进行5-6,000次主要肢体截肢,而创伤约占其中55%。下肢截肢对日常生活的活动产生了深远的影响,并非所有截肢者都能忍受或使用假体。因此,至关重要的是,假肢很舒适,并且适合患者使用以增强他们的日常活动。人造膝关节是重要的医疗设备,使许多人能够保持步行和跑步功能。在朝着这一目标努力的过程中,研究人员反复错过了软组织(韧带)与人类样运动中的结构(骨骼)之间相关性的关键作用。生物关节通过整合高素质,紧凑性和低摩擦来证明多功能性。通过在概念阶段包括这种功能的分离来设计功能和稳健的关节时,这些功能至关重要。尽管对执行人类运动时所涉及的确切含义和机制尚不了解,最近对韧带的机制进行的工程研究以及膝盖在压缩中的分析产生了一些可能的人类及其及其可能的人的特征的模型和模拟。因此,我们认为,将功能分离为假肢设计过程对于促进设计优化至关重要。研究人员积极参与开发可穿戴设备,包括越来越多地嵌入控制和电子子系统的假肢,从而使它们更加自治和“更聪明”。另一方面,空间和力量的限制意味着人造肢体接头(对于机器人或假肢)必须高度优化,以在诸如僵硬,强度,强度,摩擦,机械优势,反向倾斜和耐力的领域的机械性能中进行。一个包含铰链钉和球轴承的引脚接头。特定的假肢膝关节(polycentric)包含四杆机制,以产生移动的旋转中心,就像人膝关节一样。 There are two main categories of control for prosthetic knee joints - microprocessor control (use of an electronic unit, evaluating and making internal adjustments to control the motion) and mechanical control (use of a mechanical hinge, automatically controlled by the mechanism).The main purpose of this work is to further the state-of-the-art in prosthetics design and lower robotic limbs for transfemoral (above knee) amputees and humanoids robots in areas与人工设备及其用于机车的用途有关,包括步行,爬楼梯,蹲下和稳定性。这项研究将结合三个领域之间的关系:较低机器人四肢的技术进步,膝盖植入物的全膝关节置换设计以及“智能”假肢的出现。在这项为期两年的计划中,我们将研究一种新颖的生物启发的假肢的可行性和开发,这将利用人类膝盖膝关节的关键和有益的特征。这项研究将通过采用渐进的自下而上的方法来实现生物启发的“智能”关节的设计和测试。关于新型生物启发的关节与工业合作伙伴提供的当前假肢之间的人类绩效(能量消耗和步态效率)的比较研究将在2016年里约副伙伴中的副三项金牌得主的贡献下进行。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bio-Inspired Knee Joint: Trends in the Hardware Systems Development.
  • DOI:
    10.3389/frobt.2021.613574
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Etoundi AC;Semasinghe CL;Agrawal S;Dobner A;Jafari A
  • 通讯作者:
    Jafari A
A Robotic Test Rig for Performance Assessment of Prosthetic Joints.
  • DOI:
    10.3389/frobt.2021.613579
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Etoundi AC;Dobner A;Agrawal S;Semasinghe CL;Georgilas I;Jafari A
  • 通讯作者:
    Jafari A
Investigation into the assessment of robotic and prosthetic joints for a safer use in assisted living
对机器人和假肢关节进行评估的调查,以使其在辅助生活中更安全地使用
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Etoundi, A.C.
  • 通讯作者:
    Etoundi, A.C.
Design of a Virtual Testing Platform for assessing Prosthetic Knee Joints
评估假肢膝关节的虚拟测试平台的设计
  • DOI:
    10.1109/icarm49381.2020.9195275
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hoh S
  • 通讯作者:
    Hoh S
Mimicking Condylar Knee to Design Bio-Inspired Robotic Knee Joint Based on Magnetic Resonance Imaging
模仿膝关节髁突设计基于磁共振成像的仿生机器人膝关节
  • DOI:
    10.1109/icmt53429.2021.9687202
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hung C
  • 通讯作者:
    Hung C
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Appolinaire Etoundi其他文献

Appolinaire Etoundi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

mRNA反式调控基因转录的机制及其生物学功能
  • 批准号:
    32330018
  • 批准年份:
    2023
  • 资助金额:
    220 万元
  • 项目类别:
    重点项目
海洋微生物CRISPR单碱基分辨机制研究
  • 批准号:
    42376184
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
大气生物源有机硝酸酯的合成、定量和其在中国南方城市的成因研究
  • 批准号:
    22306059
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
城市污水厂生物除臭系统生物膜微界面微生物逸散行为及机制
  • 批准号:
    52370026
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
增材制造锌镁合金复合椎间融合器降解调控机制与生物学效应研究
  • 批准号:
    52301302
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Greatly Extended Subzero Ischemic Storage of Renal Allografts Using Novel Bio-inspired Next Generation Cryoprotectants
使用新型仿生下一代冷冻保护剂大大延长肾同种异体移植物的零度以下缺血储存
  • 批准号:
    10761617
  • 财政年份:
    2023
  • 资助金额:
    $ 12.88万
  • 项目类别:
A Bio-inspired Latent TGF-beta Conjugated Scaffold for Patient-specific Cartilage Regeneration
用于患者特异性软骨再生的仿生潜在 TGF-β 共轭支架
  • 批准号:
    10366994
  • 财政年份:
    2022
  • 资助金额:
    $ 12.88万
  • 项目类别:
A Bio-inspired Latent TGF-beta Conjugated Scaffold for Patient-specific Cartilage Regeneration
用于患者特异性软骨再生的仿生潜在 TGF-β 共轭支架
  • 批准号:
    10631889
  • 财政年份:
    2022
  • 资助金额:
    $ 12.88万
  • 项目类别:
Exploring bio-inspired azobenzene photo-switches as novel optical sensors for oxygen
探索仿生偶氮苯光电开关作为新型氧气光学传感器
  • 批准号:
    575566-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 12.88万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
A Bio-inspired Approach to Produce Novel Proteoslysis Targeting Chimeras
一种产生针对嵌合体的新型蛋白水解的仿生方法
  • 批准号:
    563587-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 12.88万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了