Novel Bio-Inspired 'Smart' Joint for Prosthetics and Robotics Lower Limbs
用于假肢和机器人下肢的新型仿生“智能”关节
基本信息
- 批准号:EP/P022588/1
- 负责人:
- 金额:$ 12.88万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2017
- 资助国家:英国
- 起止时间:2017 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
At present there are over 90,000 new cases of knee replacements and leg amputations every year in the UK alone. This is equivalent to approximately one every six minutes. Currently between 5 - 6,000 major limb amputations are performed in the UK each year and trauma accounts for approximately 55% of them. Lower limb amputation has a profound effect on activities of daily living and not all amputees are able to tolerate or use a prosthesis. Therefore, it is essential that the prosthesis is comfortable and adapted to be used by patients in order to enhance their daily activities. Artificial knee joints are important medical devices that enable many people to maintain walking and running functions. In working towards this target, researchers have repeatedly missed the key role held by the correlation between the soft tissues (ligaments) and the structure (bones) in human-like locomotion. Biological joints demonstrate multi-functionality by integrating high conformity, compactness and low friction. These functions are crucial when designing a functional and robust joint by including this separation of functions at the conceptual stage.Though there is still little known about the exact implications and mechanisms involved while performing human movement, recent engineering research into the mechanics of the ligaments and the analysis of the knee joint in compression has produced models and simulations that have shed light on some of the possible roles of the human knee features. Therefore, we believe that this separation of functions into the design process of prosthetic joint is essential to facilitate design optimisation.Researchers are actively engaged in developing wearable devices including prosthetics that are increasingly embedding control and electronics sub-systems making them more autonomous and 'smarter'. On the other hand, limitations on space and power mean that artificial limb joints (for robots or prosthetics) must be highly optimised for mechanical performance in areas such as stiffness, strength, friction, mechanical advantage, backlash and endurance.Current trends in the design of artificial lower limbs, ranging from robotic articulations to prostheses for lower limb amputees, favour the utilisation of engineered joints, which typically are composed of a pin joint containing a hinge-pin and ball bearings. Particular prosthetic knee joints (polycentric) contain four-bar mechanisms in order to produce a moving centre of rotation as is the case with the human knee. There are two main categories of control for prosthetic knee joints - microprocessor control (use of an electronic unit, evaluating and making internal adjustments to control the motion) and mechanical control (use of a mechanical hinge, automatically controlled by the mechanism).The main purpose of this work is to further the state-of-the-art in prosthetics design and lower robotic limbs for transfemoral (above knee) amputees and humanoids robots in areas relevant to artificial devices and their uses for locomotion including walking, climbing stairs, squatting and also stability. This research will combine the relationship between three areas: the technological advancements of lower robotic limbs, knee implant design for total knee replacement, and the emergence of 'smart' prosthetics.In this two-year programme, we will investigate the feasibility and development of a novel bio-inspired prosthetic joint that will exploit the key and beneficial features of human knee joint. This research will be achieved by featuring a progressive bottom up approach towards the design and test of the bio-inspired 'smart' joint. A comparative investigation with respect to human performance (energy consumption and gait efficiency) between the novel bio-inspired joint against current prosthetics provided by the industrial partners will be undertaken with the contribution of a para-triathlete gold medallist in the Rio Paralympics 2016.
目前,仅在英国,每年就有超过9万例新的膝关节置换和腿部截肢病例。这大约相当于每六分钟一次。目前,英国每年约有5-6000例大型截肢手术,其中约55%是由创伤造成的。截肢对日常生活活动影响深远,并不是所有的截肢者都能耐受或使用假肢。因此,为了提高患者的日常活动能力,假体的舒适性和适应性是至关重要的。人工膝关节是许多人维持行走和跑步功能的重要医疗设备。在朝着这个目标努力的过程中,研究人员一再错过软组织(韧带)和结构(骨骼)之间的相关性在类似人类运动中所起的关键作用。生物关节集高一致性、致密性和低摩擦力于一体,显示出多功能。通过在概念阶段包括这种功能分离,这些功能在设计功能和健壮的关节时是至关重要的。尽管人们对执行人类运动时涉及的确切含义和机制知之甚少,但最近对韧带力学的工程研究和对膝关节受压的分析已经产生了模型和模拟,揭示了人类膝关节特征的一些可能的作用。因此,我们认为,将功能分离到假肢关节的设计过程中是必要的,以促进设计优化。研究人员正在积极开发可穿戴设备,包括假肢,这些假肢越来越多地嵌入控制和电子子系统,使它们变得更自主和更智能。另一方面,空间和功率的限制意味着(机器人或假肢)假肢关节必须在机械性能方面进行高度优化,如刚度、强度、摩擦力、机械优势、间隙和耐力。从机器人关节到腿部截肢者的假肢,目前假肢设计的趋势是支持使用工程关节,通常由包含铰链销和滚珠轴承的销关节组成。特定的假肢膝关节(多中心)包含四杆机构,以产生一个移动的旋转中心,就像人类的膝盖一样。假体膝关节的控制主要有两类-微处理器控制(使用电子设备,评估和进行内部调整以控制运动)和机械控制(使用机械铰链,由机构自动控制)。这项工作的主要目的是促进最先进的假肢设计和下部机械臂,在与人工设备相关的领域,以及它们用于行走、爬楼梯、蹲下和稳定的领域。这项研究将结合三个领域之间的关系:下肢机械臂的技术进步,全膝关节置换的膝关节植入物设计,以及“智能”假肢的出现。在这个为期两年的计划中,我们将研究一种新型的仿生假肢的可行性和开发,它将利用人类膝关节的关键和有益的特征。这项研究将通过一种循序渐进的自下而上的方法来实现,以设计和测试受生物启发的“智能”关节。在2016年里约残奥会上,一名铁人三项运动员金牌得主将对新型仿生假肢与工业合作伙伴提供的现有假肢进行人体性能(能源消耗和步态效率)的比较调查。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bio-Inspired Knee Joint: Trends in the Hardware Systems Development.
- DOI:10.3389/frobt.2021.613574
- 发表时间:2021
- 期刊:
- 影响因子:3.4
- 作者:Etoundi AC;Semasinghe CL;Agrawal S;Dobner A;Jafari A
- 通讯作者:Jafari A
A Robotic Test Rig for Performance Assessment of Prosthetic Joints.
- DOI:10.3389/frobt.2021.613579
- 发表时间:2021
- 期刊:
- 影响因子:3.4
- 作者:Etoundi AC;Dobner A;Agrawal S;Semasinghe CL;Georgilas I;Jafari A
- 通讯作者:Jafari A
Investigation into the assessment of robotic and prosthetic joints for a safer use in assisted living
对机器人和假肢关节进行评估的调查,以使其在辅助生活中更安全地使用
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Etoundi, A.C.
- 通讯作者:Etoundi, A.C.
Mimicking Condylar Knee to Design Bio-Inspired Robotic Knee Joint Based on Magnetic Resonance Imaging
模仿膝关节髁突设计基于磁共振成像的仿生机器人膝关节
- DOI:10.1109/icmt53429.2021.9687202
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Hung C
- 通讯作者:Hung C
Design of a Virtual Testing Platform for assessing Prosthetic Knee Joints
评估假肢膝关节的虚拟测试平台的设计
- DOI:10.1109/icarm49381.2020.9195275
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Hoh S
- 通讯作者:Hoh S
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Appolinaire Etoundi其他文献
Appolinaire Etoundi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
骨胶原(Bio-Oss Collagen)联合龈下喷砂+骨皮质切开术治疗
根分叉病变的临床疗效研究
- 批准号:2024JJ9542
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
智能双栅调控InSe Bio-FET可控构筑与原位细胞传感机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于通用型 M13-Bio 噬菌体信号放大的动态
光散射免疫传感检测平台的建立及机制研究
- 批准号:Q24C200014
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
2D/2D BiO2-x/graphyne异质结光热活化过硫酸盐降解水体中抗生素的机理研究
- 批准号:LY23E080003
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
过渡金属掺杂与原位外延生长Z型异质结协同增强BiO2-x的宽光谱光催化活化分子氧去除水中难降解微塑料的机理研究
- 批准号:
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:
Z型异质结“(金属氧化物MOx@薄层碳TC)/BiO1-xCl”的可控构筑及其光催化性能的研究
- 批准号:22005126
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
BIO促进脂肪来源干细胞修复急性心肌梗死的作用及机制
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
6-BIO 抗肝脏衰老的作用与作用机制研究
- 批准号:19ZR1438800
- 批准年份:2019
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于MOFs热解构建薄层碳包覆的BiO1-xX基Z型异质结及其光催化水氧化苯制苯酚反应的研究
- 批准号:
- 批准年份:2019
- 资助金额:0.0 万元
- 项目类别:省市级项目
可回收MFe2O4/二维 (BiO)2CO3 复合纳米矿物材料光降解再生水中顽固型有机物机理
- 批准号:41877481
- 批准年份:2018
- 资助金额:62.0 万元
- 项目类别:面上项目
相似海外基金
Greatly Extended Subzero Ischemic Storage of Renal Allografts Using Novel Bio-inspired Next Generation Cryoprotectants
使用新型仿生下一代冷冻保护剂大大延长肾同种异体移植物的零度以下缺血储存
- 批准号:
10761617 - 财政年份:2023
- 资助金额:
$ 12.88万 - 项目类别:
Exploring bio-inspired azobenzene photo-switches as novel optical sensors for oxygen
探索仿生偶氮苯光电开关作为新型氧气光学传感器
- 批准号:
575566-2022 - 财政年份:2022
- 资助金额:
$ 12.88万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
A Bio-inspired Approach to Produce Novel Proteoslysis Targeting Chimeras
一种产生针对嵌合体的新型蛋白水解的仿生方法
- 批准号:
563587-2021 - 财政年份:2021
- 资助金额:
$ 12.88万 - 项目类别:
University Undergraduate Student Research Awards
EAGER: Novel Bio-inspired 3D Materials for Surface-Active Devices
EAGER:用于表面活性器件的新型仿生 3D 材料
- 批准号:
2022000 - 财政年份:2020
- 资助金额:
$ 12.88万 - 项目类别:
Standard Grant
Bio-inspired catalysts for the activation of aliphatic C-H bonds: toward the development of novel green processes
用于活化脂肪族C-H键的仿生催化剂:致力于开发新型绿色工艺
- 批准号:
RGPIN-2014-06336 - 财政年份:2019
- 资助金额:
$ 12.88万 - 项目类别:
Discovery Grants Program - Individual
Bio-inspired catalysts for the activation of aliphatic C-H bonds: toward the development of novel green processes
用于活化脂肪族C-H键的仿生催化剂:致力于开发新型绿色工艺
- 批准号:
RGPIN-2014-06336 - 财政年份:2018
- 资助金额:
$ 12.88万 - 项目类别:
Discovery Grants Program - Individual
Bio-inspired catalysts for the activation of aliphatic C-H bonds: toward the development of novel green processes
用于活化脂肪族C-H键的仿生催化剂:致力于开发新型绿色工艺
- 批准号:
RGPIN-2014-06336 - 财政年份:2017
- 资助金额:
$ 12.88万 - 项目类别:
Discovery Grants Program - Individual
EAGER: Novel Bio-inspired 3D Materials for Surface-Active Devices
EAGER:用于表面活性器件的新型仿生 3D 材料
- 批准号:
1747826 - 财政年份:2017
- 资助金额:
$ 12.88万 - 项目类别:
Standard Grant
Bio-inspired catalysts for the activation of aliphatic C-H bonds: toward the development of novel green processes
用于活化脂肪族C-H键的仿生催化剂:致力于开发新型绿色工艺
- 批准号:
RGPIN-2014-06336 - 财政年份:2016
- 资助金额:
$ 12.88万 - 项目类别:
Discovery Grants Program - Individual
Novel High-Performance Bio-inspired Architectured Materials
新型高性能仿生建筑材料
- 批准号:
342826-2012 - 财政年份:2016
- 资助金额:
$ 12.88万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




